Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114111
Título: | High Resolution Satellite Bathymetry Mapping: Regression and Machine Learning Based Approaches | Autores/as: | Eugenio González, Francisco Marcello Ruiz, Francisco Javier Mederos Barrera, Antonio Ramón Marqués, Ferran |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Atmospheric modeling Bathymetry Biological system modeling Monitoring Multispectral WorldView-2/3, et al. |
Fecha de publicación: | 2021 | Proyectos: | Procesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables. MAC-CLIMA (PO-MAC) |
Publicación seriada: | IEEE Transactions on Geoscience and Remote Sensing | Resumen: | Remote spectral imaging of coastal areas can provide valuable information for their sustainable management and conservation of their biodiversity. Unfortunately, such areas are very sensitive to changes due to human activity, natural phenomenona, introduction of non-native species and climate change. Thus, the main objective of this research is the implementation of a robust image processing methodology to produce accurate bathymetry maps in shallow coastal waters using high resolution multispectral WorldView-2/3 satellite imagery for the monitoring at the maximum spatial and spectral resolutions. Two different island ecosystems have been selected for the assessment, since they stand out for their richness in endemic species and they are more vulnerable to climate change: Cabrera National Park and Maspalomas Natural Protected area, located in the Balearic and Canary Islands, Spain, respectively. In addition, a third example to show the applicability of the mapping methodology to monitor the construction of a new port in Granadilla (Canary Islands) is presented. Contributions of this work focus on improving the preprocessing methodology and, mainly, on the proposal and assessment of new satellite derived regression and machine learning bathymetric models, which have been validated and compared with respect to measured reference bathymetry. After a thorough analysis of 9 techniques, using visual and quantitative statistical parameters, ensemble learning approaches have demonstrated excellent performance, even in challenging scenarios up to 35 m depth, with mean RMSE values around 2 m. | URI: | http://hdl.handle.net/10553/114111 | ISSN: | 0196-2892 | DOI: | 10.1109/TGRS.2021.3135462 | Fuente: | IEEE Transactions on Geoscience and Remote Sensing [ISSN 0196-2892], 14 diciembre 2021 |
Colección: | Artículos |
Citas SCOPUSTM
21
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
19
actualizado el 24-nov-2024
Visitas
101
actualizado el 13-oct-2024
Descargas
381
actualizado el 13-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.