Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114111
Campo DC Valoridioma
dc.contributor.authorEugenio González, Franciscoen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorMederos Barrera, Antonio Ramónen_US
dc.contributor.authorMarqués, Ferranen_US
dc.date.accessioned2022-03-21T09:23:20Z-
dc.date.available2022-03-21T09:23:20Z-
dc.date.issued2021en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://hdl.handle.net/10553/114111-
dc.description.abstractRemote spectral imaging of coastal areas can provide valuable information for their sustainable management and conservation of their biodiversity. Unfortunately, such areas are very sensitive to changes due to human activity, natural phenomenona, introduction of non-native species and climate change. Thus, the main objective of this research is the implementation of a robust image processing methodology to produce accurate bathymetry maps in shallow coastal waters using high resolution multispectral WorldView-2/3 satellite imagery for the monitoring at the maximum spatial and spectral resolutions. Two different island ecosystems have been selected for the assessment, since they stand out for their richness in endemic species and they are more vulnerable to climate change: Cabrera National Park and Maspalomas Natural Protected area, located in the Balearic and Canary Islands, Spain, respectively. In addition, a third example to show the applicability of the mapping methodology to monitor the construction of a new port in Granadilla (Canary Islands) is presented. Contributions of this work focus on improving the preprocessing methodology and, mainly, on the proposal and assessment of new satellite derived regression and machine learning bathymetric models, which have been validated and compared with respect to measured reference bathymetry. After a thorough analysis of 9 techniques, using visual and quantitative statistical parameters, ensemble learning approaches have demonstrated excellent performance, even in challenging scenarios up to 35 m depth, with mean RMSE values around 2 m.en_US
dc.languageengen_US
dc.relationProcesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables.en_US
dc.relationMAC-CLIMA (PO-MAC)en_US
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensingen_US
dc.sourceIEEE Transactions on Geoscience and Remote Sensing [ISSN 0196-2892], 14 diciembre 2021en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherAtmospheric modelingen_US
dc.subject.otherBathymetryen_US
dc.subject.otherBiological system modelingen_US
dc.subject.otherMonitoringen_US
dc.subject.otherMultispectral WorldView-2/3en_US
dc.subject.otherOptical sensorsen_US
dc.subject.otherRegression and machine learning based techniquesen_US
dc.subject.otherSatellite-Derived Bathymetry (SDB)en_US
dc.subject.otherSatellitesen_US
dc.subject.otherSea measurementsen_US
dc.subject.otherShallow coastal wateren_US
dc.titleHigh Resolution Satellite Bathymetry Mapping: Regression and Machine Learning Based Approachesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2021.3135462en_US
dc.identifier.scopus2-s2.0-85121783047-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.eissn1558-0644-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr2,404
dc.description.jcr8,125
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorMarcello Ruiz, Francisco Javier-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcidhttps://orcid.org/0000-0003-1680-0726-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameEugenio González, Francisco-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameMederos Barrera, Antonio Ramón-
Colección:Artículos
Adobe PDF (1,69 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.