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Abstract—Remote spectral imaging of coastal areas can provide 

valuable information for their sustainable management and 

conservation of their biodiversity. Unfortunately, such areas are 

very sensitive to changes due to human activity, natural 

phenomenona, introduction of non-native species and climate 

change. Thus, the main objective of this research is the 

implementation of a robust image processing methodology to 

produce accurate bathymetry maps in shallow coastal waters 

using high resolution multispectral WorldView-2/3 satellite 

imagery for the monitoring at the maximum spatial and spectral 

resolutions. Two different island ecosystems have been selected for 

the assessment, since they stand out for their richness in endemic 

species and they are more vulnerable to climate change: Cabrera 

National Park and Maspalomas Natural Protected area, located in 

the Balearic and Canary Islands, Spain, respectively. In addition, 

a third example to show the applicability of the mapping 

methodology to monitor the construction of a new port in 

Granadilla (Canary Islands) is presented. Contributions of this 

work focus on improving the preprocessing methodology and, 

mainly, on the proposal and assessment of new satellite derived 

regression and machine learning bathymetric models, which have 

been validated and compared with respect to measured reference 

bathymetry. After a thorough analysis of 9 techniques, using visual 

and quantitative statistical parameters, ensemble learning 

approaches have demonstrated excellent performance, even in 

challenging scenarios up to 35 m depth, with mean RMSE values 

around 2 m. 

 
Index Terms— Satellite-Derived Bathymetry (SDB), 

multispectral WorldView-2/3, shallow coastal water, regression 

and machine learning based techniques. 

 

I. INTRODUCTION 

urrently, remote sensing of coastal areas can provide 

valuable information for optically characterizing and 

monitoring shallow coastal waters. The International 

Hydrographic Organization (IHO) indicates that, at least, half 

of the world’s shallow coastal waters remain unmapped or 

poorly understood [1]. About 15% (20 million km2) of all land 

on the planet is under some form of protection. Specifically, in 

Spain, protected areas cover 27.21% of its total surface and the 

coastline length is about 7,880 km. Preserved marine regions 

exceed the 8% but, nevertheless, only 25% of the littoral areas 

are being monitored in detail [2]. These coastal areas are 

essential for the conservation of biodiversity and the provision 

of basic services for the society.  

Specifically, extracting bathymetric information and 

mapping the seafloor to monitor coral reefs or benthic habitats, 

are crucial for a wide range of near-shore activities and 

applications such as climate change monitoring, environmental 

management, engineering and maintenance of infrastructures, 

hydrographic applications, navigation or aquaculture, among 

others. 

Bathymetric studies in shallow waters can be accurately 

performed with single or multibeam echosounders; however, 

such technologies are laborious and extremely expensive when 

covering wide areas [3]. In this context, for the monitoring and 

protection of coastal areas, new remote sensing sensors and 

techniques are suitable [4-6]. Specifically, high resolution 

satellite imagery can be an excellent solution to provide 

continuous and updated information. However, the accurate 

derivation of satellite products is very complex and challenging 

in littoral areas due to atmospheric disturbances, sunglint 

effects on the sea surface and the water column absorption and 

backscattering caused by the water inherent optical properties 

and the dissolved and particulate constituents [7, 8]. 

Consequently, selection of the appropriate satellite imagery 

(e.g. suitable dates, sensing geometry, calm sea areas to avoid 

sunglint effects, water transparency to achieve the maximum 

solar radiation penetration, etc.) is critical, as well as the 

application of advanced atmospheric and deglinting correction 

techniques [9-11]. Also, estimating bathymetry using optical 

remote data is challenging as it requires knowledge of the 

water-leaving radiation as a function of depth for different 

water composition and seafloor materials [12].  

Different passive and active space and airborne platforms 

have been effectively used to derive bathymetry using optical, 

LIDAR and radar sensors [13, 14]. Passive optical remote 

sensing is a popular approach that takes advantage of the 

significant penetration capabilities of shortwave radiation, 

mainly around the blue and green channels. Based on passive 

systems, the techniques for obtaining high-resolution satellite-

derived bathymetry, implemented in this research, have been 

grouped into: Regression-based Bathymetry Models (RBMs), 

and Machine Learning Bathymetry Models (MLBMs) [15].  

 Among the Physical-based Bathymetry Models (PBMs), we 

have studied the approach implemented by Lyzenga et al. [16, 

17], based on the linear relationship between the depth and the 

neperian logarithm of the reflectance extracting the reflectance 

in the near-infrared (NIR) in deep waters, and the bathymetric 

model based on the resolution of the Radiative Transfer 

Equation, detailed in Eugenio et al. [8]. This model is based on 

the multispectral adaptation of the Hyperspectral Optimization 

Process Exemplar Model (HOPES) [18]. Physical-based 
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models have, in general, the limitation that they depend on a 

multitude of input parameters and training data. 

To solve the problem of parameter dependence, empirical 

models were developed, which apply conditions and 

approximations to the radiometric equations, based on the use 

of training data. Regarding the empirical models based on 

regression, it is important to highlight the Stumpf model [19], 

widely used in Satellite-Derived Bathymetry (SDB) and 

considered a benchmark algorithm. It is based on the linear 

relationship of depth with the logarithms of different spectral 

bands. However, the linearity of the model is not always 

fulfilled in the transformed Stumpf space and the model shows 

a dependency on the type of seafloor. To solve the non-linearity, 

a multitude of approaches have been proposed. For example, 

the use of a quadratic regression in the Stumpf transform space 

[20] or the work proposed by Kanno et al. [21], applying a semi-

parametric regression. In summary, regression techniques have 

limitations in the maximum depth at which they can obtain 

reliable bathymetric maps, in addition to the strong dependence 

with the substrate albedo. 

A different paradigm to derive bathymetric information is 

based on Machine Learning (ML) techniques, which overcome 

the preceding limitations, and allow exploiting all the spectral 

information of the images [22]. Some works obtaining accurate 

bathymetric maps using Support Vector Machine (SVM) 

models are presented in [23-25]. Random Forest (RF) 

algorithms have also been used to derive bathymetry [25-27]. 

In particular, [26] and [27] describe the use of the K-Nearest 

Neighbor (KNN) and Random Forest (RF) algorithms, 

respectively, to achieve lower errors than Stumpf et al. [19]. In 

[28], Artificial Neural Networks (ANN) are used to obtain 

bathymetric maps, reporting minor errors. In [29] and [30] 

ensemble models have been applied with success in very 

shallow waters. In summary, better results could be obtained 

using MLBMs but with a high dependence on data. Therefore, 

it is essential to select the most suitable algorithm for an 

effective estimation of bathymetry [31]. 

In this work, contributions are provided in the overall 

methodology proposed to estimate bathymetry, as shown in 

Figure 3.  

First, a combined model-based atmospheric correction and 

sunglint technique is presented and statistical assessed with 

respect to in-situ measurements. Specifically, the reflectivity 

obtained using the adapted 6S (Second Simulation of a Satellite 

Signal in the Solar Spectrum) atmospheric correction plus a 

deglinting method, which includes a noise reduction algorithm, 

is evaluated using the reference signatures measured with a 

field spectroradiometer, acquired at the time of satellite 

overflight.  

Second, based on the optimal results obtained in [8] for high 

resolution SDB, both the intercomparison of RBMs and 

MLBMs is carried out. The RBMs chosen for the analysis are 

those implemented by Stumpf: linear and quadratic. In addition, 

a novel regression model is presented, termed Sigmoid-based 

Bathymetry Model (SBM), based on the use of the sigmoid 

function for modeling the non-linearity of the Stumpf 

relationship. On the other hand, the implemented and tested 

MLBMs are the linear SVM, SVM with Gaussian kernel, KNN, 

Decision Trees [32], and additional models that apply Ensemble 

Learning [33], specifically the Bagging Tree (BT) [34] and 

Subspace KNN (S-KNN) [35].  

To our knowledge, this is the first work that provides a 

comprehensive review of such a large number of techniques to 

extract bathymetric maps. It also should be noted that a new 

model has been developed and others, not previously applied in 

this context, have been incorporated. In addition, it is important 

to highlight that many works only address studies at very 

shallow depths (typically less than 15 m) and in optimal areas 

with transparent and calm waters, while in this work, a 

complete analysis has been carried out in different areas and 

reaching up to considerable depths (25 m and 35 m) to study the 

performance in such challenging scenarios. Finally, a real case 

study is presented to demonstrate its applicability during the 

construction of a new port infrastructure. 

This paper is organized as follows: Section II presents the 

studied areas, as well as the high resolution satellite and in-situ 

data used. Section III discusses the applied data pre-processing 

techniques. Section IV focuses on the processing methodology 

for bathymetry mapping of shallow-water environments, 

describing the regression and machine learning remote sensing-

based approaches. The main results are presented and discussed 

in Section V. Finally, conclusions are included in Section VI.  

II. STUDY AREAS AND DATASETS 

Two coastal areas have been selected for the study with very 

different characteristics: Cabrera and Maspalomas, located in 

the Balearic Islands (Mediterrranean Sea) and the Canary 

Islands (Northwest African coast, Atlantic Ocean), 

respectively, as shown in Fig. 1. The Cabrera Archipelago is 

made up of 19 islands or islets and it is the best example of 

undisturbed island ecosystems in the Spanish Mediterranean 

Sea. Since 1991, the Cabrera Archipelago has been declared 

National Park to preserve its rich biodiversity and, specially, the 

Posidonia oceanica seagrass beds that provide habitat for fish 

and crustaceans. On the other hand, the Natural Reserve of 

Maspalomas, south of Gran Canaria Island, includes a beach of 

6 km long with a mobile dune system of white sand and a small 

lagoon. For several decades, the dune system has suffered 

increasingly obvious degradation with a constant loss of sand, 

mainly due to urban touristic development processes and 

human impact, which has altered the dynamics of the wind and 

the dunes. It is estimated that around 45,000 m3 of sand are lost 

each year that ends up at the bottom of the sea. For this reason, 

a bathymetric analysis is very important as local authorities are 

running an ambitious project based on the extraction of sand 

from a specific intertidal zone and its reintroduction in the 

system.  

Finally, a case example is introduced to show the 

applicability of the bathymetric mapping in a specific task: to 

monitor the construction of a new port in Granadilla (Tenerife 

Island, Canary Islands). The Granadilla coast (Fig. 1), located 

in the South-East of the island of Tenerife, is an environment of 

high ecological value that was compromised due to the 

construction of the port, whose works began in 2009. To 

guarantee environmental conservation, the Granadilla 

Environmental Observatory Public Foundation (OAG) was 

created, which is in charge of monitoring this environment, not 

only through traditional in-situ methods, but also through the 
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processing of satellite imagery, within the framework of the 

Port of Granadilla Environmental European Monitoring 

Program, established in 2010, in order to guarantee sustainable 

environmental quality, inside and outside the port, during and 

after its construction. 

 

Fig. 1. Cabrera archipelago, Maspalomas and Granadilla geographic locations 
(Google©). 

 

In this work, very high resolution WorldView-2/3 satellite 

imagery has been used. Data have a radiometric resolution of 

11 bits and a spatial resolution of 1.8/1.3 m, at the nadir, for the 

8 multispectral bands (0.400-1.040 µm) [36]. Specifically, the 

level 2 ortho-ready product has been selected. Fig. 2 shows the 

true color composite images of Cabrera, Maspalomas and 

Granadilla for a small subset of the scene. The Cabrera image 

was recorded by WV-2 on September 1, 2016 (10:29 hr. UTC) 

with an off-nadir view angle of 24.6º, while the Maspalomas 

image by WV-3 on May 22, 2018 (12:06 hr. UTC) with an off-

nadir angle of 10.6º. For Granadilla, 2 images were used: WV-

2 of December 1, 2011 (12:11 hr. UTC) with an off nadir angle 

of 3.6º, and WV-3 recorded on December 21, 2019 (12:02 hr 

UTC) with an off nadir angle of 16.5º (Fig. 2(c)). 

For the systematic use of the WV-2/3 multispectral data, a 

thorough assessment of the combined atmospheric and sun glint 

correction procedures has been performed in the Natural 

Reserve of Maspalomas. The goal was to select the best 

methodology to improve the water leaving reflectance 

estimation in near-shore environments. Moreover, a complete 

multi-algorithm study to map bathymetry has been carried out 

in the Cabrera Island through the use of the multispectral high-

resolution satellite data. In addition, a summary of the 

bathymetric maps derived by the best algorithms is also 

provided for the Maspalomas area. Finally, the optimal overall 

methodology has been applied to monitor the construction of 

the port of Granadilla. 

In-situ field data, for the Maspalomas shallow coastal waters, 

was collected simultaneously to the WorldView-3 satellite over 

flight [11]. Specifically, 4 points were sampled (Fig. 2(b)) and 

their reflectance in the 350–2500 nm spectral range was 

recorded with the spectroradiometer ADS Fieldspec 3. 

III. REMOTE SENSING DATA PREPROCESSING 

New remote sensing platforms with improved sensors can 

contribute to the generation of accurate information for the 

management of coastal areas and vulnerable ecosystems [11, 

37, 38]. However, the radiation acquired by space sensors is 

affected by perturbations produced by the atmospheric 

scattering and absorption and by the sunglint effect on the sea 

surface. These unwanted contributions affect to the accurate 

extraction of information and, consequently, have to be 

properly addressed.  

 

  

(a) (b) 

 

(c) 

Fig. 2. Worldview-2/3 scenes used in the analysis: (a) Cabrera, 2016. (b) 

Maspalomas, 2018. (c) Granadilla, 2019. 

 

Regarding the atmospheric correction, different approaches 

have been implemented. Some works considering WorldView-

2 imagery have demonstrated that the Second Simulation of a 

Satellite Signal in the Solar Spectrum (6S) [39] has an excellent 

performance achieving low RMSE values in littoral zones [8-

11].  

The 6S is a radiative transfer model to predict the reflectance 

at the top of atmosphere (𝜌𝑇𝑂𝐴). For an accurate atmospheric 

correction, some input parameters have to be properly set. 

Specifically, the type of satellite sensor, geographical 

coordinates and altitude of the area, the sun angles, the time and 

date of image acquisition, the atmosphere and aerosol models 

and the aerosol optical thickness have to be introduced. The 

Mid-Latitude Summer is the most suitable atmosphere model 

for the climate of the Balearic and Canary Islands for the 

sensing dates. The Maritime aerosol model was selected as 

island areas are considered in the study. The aerosol optical 

thickness parameter was properly adjusted using in-situ or 

satellite sensor information (i.e. MODIS at 550 nm), because 

major errors in their estimation can significantly affect the 

surface reflectivity computed. The contribution of adjacent 

pixels was considered to take into account the spatial mixing of 

radiance among nearby pixels caused by atmospheric 

scattering. 

Next, the removal of sunglint is essential to retrieve 

bathymetry and the seabed mapping in shallow waters. Sunglint 

correction techniques have been proposed for open ocean and 

coastal applications [9, 40]. In this work, to remove the sunglint 

on the sea surface from the visible channels of the high-

resolution imagery, a method combining physical principles 

and image processing techniques has been applied. According 

to the physical model proposed by Kay et al. [40], for a selected 

deep water area, WV-2/3 visible bands 1 to 5 are included in a 

1 2 
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linear regression with respect to the WV-2/3 NIR bands 7 and 

8 to calculate the slope 𝑏𝜆. Pixels of the image scene are 

deglinted applying the following expression, 

𝜌𝑉𝐼𝑆
𝑑𝑒𝑔(𝜆) =  𝜌𝑉𝐼𝑆(𝜆) − 𝑏𝜆(𝜌𝑁𝐼𝑅 − 𝑀𝐼𝑁𝜌𝑁𝐼𝑅)               (1)                    

where  𝜌𝑉𝐼𝑆
𝑑𝑒𝑔(𝜆) is the deglinted water surface reflectance of the 

visible channels, 𝑏𝜆 is the slope of the linear regression and 𝜌𝑉𝐼𝑆 
and 𝜌𝑁𝐼𝑅 are the water leaving reflectance of the visible and 

near-infrared channel, respectively.  

Apart from the physical deglinting approach, a histogram 

matching technique is applied to statistically equalize each 

channel of the deglinted image to match the water reflectivity 

prior to the deglinting process, as the presence of whitecaps or 

foam affects to the spectral content of the image altering the 

reflectance intensity.  

After the glint is removed, depending on the state of the sea 

surface state, certain amount of noisy pixels can be expected. 

Therefore, a median filter is used for noise removal and to 

facilitate, for example, the classification of subsurface features.  

After the evaluation and selection of the combined 

atmospheric-deglinting preprocessing tasks, to improve the 

water reflectance in near-shore environments, it is possible to 

obtain accurate bathymetric information using the reflectivity 

information from the multispectral corrected channels with 

greater penetration. 

IV. SATELLITE DERIVED BATHYMETRY MAPPING 

With the increase of coastal population densities, marine 

ecosystems are under significant stress due to overfishing, 

pollution, and coastal development. Moreover, global 

environmental changes, such as sea-level rise and increases in 

ocean temperature and acidification, are applying additional 

pressure to littoral water ecosystems [7, 41]. New satellite 

sensors and techniques for coastal monitoring and protection 

are critically needed. In this context, the monitoring of 

multitemporal bathymetric information will enhance the 

understanding of some of the main climate change effects as, 

littoral erosion, benthic habitats resilience, sea-level variation, 

etc.  

The systematic framework to derive an accurate model for 

high-resolution bathymetry mapping of shallow littoral waters 

is included in Fig. 3. The multi-algorithm analysis developed in 

this work exploits the spectral capabilities of the WorldView-

2/3 multispectral imagery. Different Regression and Machine 

Learning Bathymetry Techniques are analyzed. 

Two different analysis were performed to assess the accuracy 

and robustness of the different techniques when estimating 

bathymetry down to 2 challenging depths (25 m and 35 m). 

During the training and test of the bathymetric techniques, the 

bathymetry derived by a multibeam echosounder was used as a 

reference. Specifically, master isobaths every meter were 

chosen to extract a total of 67.660 and 82.640 samples for the 

25 m and 35 m depth studies, respectively. For each meter of 

depth, 80% of the samples were used to train the models and 

the remaining 20% for their evaluation. To avoid geolocation 

errors, flat seafloor areas were chosen. 

 

Fig. 3. Multi-algorithm diagram for the bathymetry-derived mapping of littoral 

areas with multispectral high-resolution satellite remote sensing imagery. 

A. Regression-Based Techniques 

Considering the optical properties of water and underwater 

reflectance and using the best WorldView-2/3 bands, empiric 

algorithms have been analyzed to extract bathymetry at 

different depth ranges.  

The most relevant regression model in literature was 

proposed by Stumpf et al. [19]. This model is based on the 

exponential relationship between the attenuation coefficients of 

different bands and depth. Depth can be expressed by, 

𝑧 = 𝑚0 + 𝑚1
ln (𝑛 𝑅(λ𝑖))

ln (𝑛 𝑅(λ𝑗))
         (2) 

where, 𝑚0 is the offset, 𝑚1 is the slope, 𝑅(λ𝑖,𝑗) is the 

reflectivity in bandi,j and 𝑛 is an arbitrary multiplicative value 

so that values in the logarithms are positive. Different values of 

“n” are commonly used, such as 100 or 1000. In our case we 

choose 100 and results were satisfactory. The model (2), 

presented by Stumpf, indicates that there is independence with 

the type of seafloor. However, in practice, for large areas, there 

are different slopes and offsets in different types of bottoms, 

depending on the Field of View (FoV) of the satellite. In order 

to model this behavior, an improved Stumpf model is 

implemented through a quadratic regression, given by [42]: 

𝑧 = 𝑚0 + 𝑚1
ln (𝑛 𝑅(λ𝑖))

ln (𝑛 𝑅(λ𝑗))
+ 𝑚2  (

ln(𝑛 𝑅(λ𝑖))

ln(𝑛 𝑅(λ𝑗))
)

2

        (3) 

This quadratic function can be approximated to a linear 

function for low depth areas leading to an identical behavior to 

the linear Stumpf model.  

Fig. 4 shows an example of the evolution of the Stumpf ratio 

with respect to bathymetry up to 25 m depth. The red line 

represents the trajectory sampled in the WV-2 image of Cabrera 
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island at increasing depths and the corresponding curve is 

plotted. Values of the ordinate axis correspond to the 

relationship 
ln (𝑛 𝑅(λ𝑖))

ln (𝑛 𝑅(λ𝑗))
. In this example, the blue and green 

bands have been chosen. A saturation of the curve can be 

appreciated that will remain for deeper waters. Consequently, 

the linear and quadratic regressions do not properly model the 

Stumpf ratio in deeper areas. To solve this problem and to 

improve the robustness and accuracy, a new regression 

approach, called the Sigmoid-based Model, is proposed in this 

work.  

   

(a) (b) 

Fig. 4. Stumpf ratio variation with depth: (a) sampled transect (red line). (b) 

Stumpf ratio at the sampled points.  

 

• Sigmoid-based Model: A New Regression Approach  

As previously indicated, pixel saturation of deep areas 

produces a curve of values in relation to depth. A saturation in 

the curve is clearly observed for deep pixels. Taking advantage 

of the s-shaped curve of the Sigmoid function and its ability to 

model non-linearities, the following expression is proposed to 

estimate the bathymetry, 

𝑓 = 𝑚1 (
1

1+𝑒−𝑚0·𝑧 −
1

2
) + 𝑚2      (4) 

where the constant (−
1

2
)  is chosen to center the sigmoid at 

zero, 𝑚0 is the scale of the inputs, 𝑚1 corresponds to the 

sigmoid scale, 𝑚2 is the continuous component, 𝑧 corresponds 

to the depth, and 𝑓 is the Stumpf relation (𝑓 =
ln (𝑛 𝑅(λi))

ln (𝑛 𝑅(λj))
). 

Therefore, depth can be formulated by: 

𝑧 = −
1

𝑚0
𝑙𝑛 (

2 𝑚1

2 𝑓−2 𝑚2+𝑚1
− 1)      (5) 

This novel model using a sigmoid function does not present 

the problem of unwanted behavior in deeper areas or outside the 

training range, as occurs with polynomial regressions, since it 

properly models the saturation of deep pixels. 

Although variable bottom-reflectance and variation in the 

optical properties of the water column impact the accurate depth 

extraction, using several optical bands increases the robustness 

of the depth estimation.  

However, SDB based on multi-spectral sensors still presents 

problems for practical use. Previously used methods basically 

require supervised training depth data for each image, and 

bathymetry cannot be extracted only using the satellite image. 

 

 

B. Machine Learning-Based Techniques 

At present, Machine Learning techniques [12, 13, 43] 

represent a new paradigm to obtain high resolution satellite 

bathymetry. These methods allow, from some training data, 

obtaining a model that maps inputs to desired outputs. To 

accomplish this objective, a metric is iteratively minimized 

based on statistical optimization. Even though it is not simple 

to develop a model that relates water depth and the multispectral 

bands, under variable sensing conditions, machine learning can 

offer a good solution. In consequence, we have explored the 

effectiveness of machine learning algorithms for Satellite-

Derived Bathymetry (SDB). 

Machine Learning systems not only model the non-linear 

relationships of the transformed Stumpf space, but also allow 

obtaining bathymetric maps from the information included in 

all the bands of the original image. The latter makes it possible 

to improve the exploitation of the spectral information, at the 

cost of increasing the computational borden. In this work two 

families of Machine Learning techniques have been analyzed: 

Multiclass Classification and Ensemble Learning approaches.  

 

• Multiclass classification systems 

Multiclass systems classify the entries into a finite set of 

classes [44], which in this case corresponds to the estimation of 

the bathymetry map levels. The number of classes, according to 

the maximum depth (𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ), minimun depth (𝑀𝑖𝑛𝑑𝑒𝑝𝑡ℎ), 

and bathymetry resolution (𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑑𝑒𝑝𝑡ℎ) is: 

𝑪𝒍𝒂𝒔𝒔𝒆𝒔 =  ⌊
𝑴𝒂𝒙𝒅𝒆𝒑𝒕𝒉−𝑴𝒊𝒏𝒅𝒆𝒑𝒕𝒉

𝑹𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒅𝒆𝒑𝒕𝒉
⌋       (6) 

The selected multiclass classification systems implemented 

in this work are: 

(i) Support Vector Machines [45] are based on searching the 

division of the set of inputs by means of a hyperplane, finding 

relationships between bands of the image. To accomplish this, 

the cost function is minimized in relation to the 𝑊 parameters: 

𝐽(𝑊) = −
𝐶

𝑚
∑   (𝑧(𝑖) 𝑐𝑜𝑠𝑡0 (𝑤0 + 𝑤1𝑥1

(𝑖)
+ ⋯ + 𝑤𝑁𝑥𝑁

(𝑖)
) +𝑚

𝑖=0

(1 − 𝑧(𝑖)) 𝑐𝑜𝑠𝑡1 (𝑤0 + 𝑤1𝑥1
(𝑖)

+ ⋯ + 𝑤𝑁𝑥𝑁
(𝑖)

))    (7) 

where C is a scaling parameter, m is the number of samples, 𝑥𝑁
(𝑖)

 

correspond to the input image channels and 𝑧(𝑖) is the expected 

bathymetry. 

SVM systems perform a binary classification. However, to 

address a multiclass classification and obtain bathymetry maps, 

SVM algorithms are applied iteratively until the target 

resolution is achieved. In addition, to perform a non-linear 

classification, a kernel can be applied on the data set to 

transform a non-linear feature space into a linear space, 

depending on the nature of the data and the kernel used. The 

Gaussian kernel produces good results [46]: 

𝒌(𝒙) = 𝒆
−

||𝒙−𝒓𝒊||
𝟐

𝟐𝝈𝟐         (8) 

where 𝑘(𝑥) is the linearized value for each point 𝑥, 𝑟𝑖 are the 

reference points and 𝜎2 is the variance of the Gaussian. 
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(ii) K-Nearest Neighbors [47] are based on the assignment of a 

point in the feature space to a class (depth) using the Euclidean 

distance: 

𝑑(𝑥, 𝑥𝑟𝑒𝑓) = √∑ (𝑥𝑖 − 𝑟𝑖)
2𝑝

𝑖=1               (9) 

where 𝑥 is the analyzed point, 𝑟𝑖   is the reference point and 𝑝 is 

the dimension of the feature space. 

In estimation, the input is classified as the class, or depth, of 

greatest presence between the nearest K points. 

(iii) Decision Trees [32] are based on establishing successive 

conditionals to classify an entry. Each conditional corresponds 

to a node in the tree, where the data set is divided into two 

subsets. The resulting tree must have the necessary bifurcations 

to have as many final classes as depth levels on the bathymetric 

map. Decision Tree training is based on the homogeneity of the 

resulting group at each branch. To quantify homogeneity, the 

Gini Index [48] is applied, which is given by the expression: 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1         (10) 

where 𝑛 refers to the number of classes (depths) and 𝑝𝑖  indicates 

the probability of a class 𝑖 in the data subset at a given node. 

In this research, the following Multiclass Classification 

algorithms have been implemented and assessed: linear SVM, 

SVM with Gaussian kernel, KNN and Decision Tree. 

 

• Ensemble Learning systems 

Systems that apply Ensemble Learning techniques [33] are 

based on the idea that a joint election produces better results 

than individual elections, obtaining, as demonstrated in Section 

V, bathymetric maps of greater accuracy. 

Starting from a data set, N data subsets are generated by 

sampling, which are fed during the training phase to N 

classification models with the same initial configuration. Once 

the N models have been trained, N possible outputs are 

estimated when faced with a new entry. The output of the 

overall system is obtained based on a decision metric taking 

into account the individual outputs. The final estimated depth 

is, therefore, given by: 

�̂� = max𝑐(𝑧̅)          (11) 

where 𝑧̅ is the set of depth estimates for each classification 

model and max𝑐  is the function that obtains the class with the 

highest presence among the outputs of each model. 

The Machine Learning models implemented in this work, 

which apply Ensemble Learning techniques to improve water 

depth estimation, are: Bagging Tree and Subspace KNN. 

 

(i) Bagging Tree [34] applies the Bootstrap Aggregating 

(Bagging) technique [49] to Decision Tree classification 

systems. In Bagging models, a uniform sampling with 

replacement is performed, so there will be repeated elements 

between subsets. 

(ii) Subspace KNN [35] applies the Random Subspace 

technique [50] to KNN classification systems. In the Random 

Subspace, uniform sampling is performed without replacement, 

so the intersections of the generated subsets are the empty set, 

that is, there are no repeated data. 

It is worth mentioning that bathymetric maps must be 

continuous, as in regression models, since depth evolves in 

nature in this way. However, applying Machine Learning 

techniques, discrete maps are obtained, with as many classes as 

defined according to Equation (6). In this work, the 

Resolutiondepth selected was 1 m. Therefore, to transform the 

bathymetry map obtained into a continuous map, a Gaussian 

filter with a standard deviation of 0.5 was applied.  

V. RESULTS 

This section includes the assessment of the pre-processing 

corrections and the detailed analysis of the bathymetric 

mapping applying the previous 9 techniques on very high 

resolution multispectral imagery. 

 

A. Assessment of Combined Atmospheric-Deglinting 

Preprocessing 

A comprehensive assessment of the preprocessing steps was 

performed to the Maspalomas shallow coastal waters using the 

Worldview-2/3 imagery. As indicated in Section II, this work 

implements a combined 6S atmospheric correction model with 

deglinting techniques. A preliminary analysis of the 6S 

parameterization was performed and, basically, changes in the 

different input parameters only led to slight variations in the 

estimated reflectance. 

Next, the estimated reflectance of the atmospherically 

corrected image was compared with the real reflectance 

measured by the ADS Fieldspec 3 spectroradiometer in 

representative coastal sites [51]. The result of combining the 6S 

atmospheric correction model, properly parameterized, a 

simple correction of the solar reflection, based on the physical 

algorithm of Kay et al. [40], and a subsequent histogram 

adjustment, according to the Moorea model [52], provides 

optimal results, as shown in Fig. 5, for the 4 strategically 

selected coastal water points (Fig. 2). As presented in Table I, 

the appropriate combination of the 6S model and the improved 

deglinting technique achieves reflectivity values very close to 

those measured in-situ, with approximate RMSE of 0.5%. 

The outstanding results of this important stage of the WV-

2/3 data preprocessing, are as well applicable to the coastal 

areas of Cabrera and Granadilla, where imagery with suitable 

sea state conditions was selected. 

 
TABLE I 

STATISTICS RESULTS FOR THE PREPROCESSED IMAGES WITH RESPECT TO THE 

IN-SITU MEASUREMENTS AND CORRECTED SUNGLINT (HEDLEY METHOD). 

Atmospheric 

Model 
Deglinting  RMSE ↓ BIAS ↓ 

6S 

No correction 0,02580 -0,016859 

Hedley + 

Post-processing 
0.00508 0.000638 
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Some results of the complete preprocessing methodology 

applied to the Maspalomas and Cabrera littoral zones are shown 

in Fig.6. The removal of the sunglint effects are clearly seen in 

both areas and, specially, for Maspalomas where pronounced 

glint is present on the sea surface.  
 

 

Fig. 5. Spectral reflectivity signatures with the appropriate combination of the 

6S model and the improved deglinting technique in the 4 coastal shallow water 

sites sampled (see Fig. 2 (b)): (a) Point 1. (b) Point 2. (c) Point 3. (d) Point 4. 

 

   

   
(a) (b) (c) 

Fig. 6. WorldView-2/3 images of Maspalomas (up) and Cabrera (down): (a) 

true color composite. (b) Images after the 6S correction. (c) Images after the 
deglinting process.  

B. Assessment of Satellite-Derived Bathymetry Models  

In this section, the detailed results of the selected algorithms 

for coastal bathymetry mapping in Cabrera Island are presented. 

In addition, a summary of the main results for the Maspalomas 

area is included, allowing the robust mapping of water depth in 

littoral waters. 

The main goal of this work is to assess the performance of 9 

techniques to map bathymetry in complex shallow water areas. 

For this reason, 2 case studies have been selected. In the first 

case, a maximum depth of 25 m has been used to train and test 

the different approaches, while in the second study, depths up 

to 35 m were considered to assess the robustness in such a 

challenging scenario. 

This multi-algorithm analysis is divided into, on the one 

hand, the study of regression-based models and machine 

learning-based models, and, on the other hand, the comparative 

study of both approaches. 

In each case, for the qualitative analysis, the bathymetry 

obtained by each model is shown and can be compared to the 

reference bathymetry. For the quantitative analysis, the values 

of the RMSE and R2 are presented. In addition, the RMSE value 

is analyzed for each meter of depth, and, finally, the curve that 

relates the estimated versus the expected depth is presented for 

a specific transect. 

In particular, the results for the subscene of Fig. 7(a) are 

presented. It corresponds to an atmospherically corrected and 

deglinted WV-2 multispectral image from a selected beach of 

Cabrera Island. 

 

• Evaluation of Regression-based Bathymetry Models 

Two different experiments were carried out using training 

data limited to values up to 25 and 35 meters. The aim was to 

evaluate the precision and robustness of the existing and 

proposed models in complex scenarios reaching the limits of 

radiation penetration capability: (i) typical coastal areas (25 m) 

and (ii) areas with calm and transparent waters (35 m).  

After a preliminary analysis, blue and green bands were 

selected for the regression models. Fig. 7 shows the bathymetry 

obtained by each technique using the same training data. Left 

and right columns show the SDB maps obtained up to 25 m and 

35 m, respectively. As indicated, each model has been trained 

in 2 different ways, with depth data up to 25 m and up to 35 m, 

and then bathymetric maps have been generated for the whole 

scene. To facilitate the visual comparison in both situations, a 

single colormap has been chosen. 

In Fig. 7 (a), the RGB composite is presented while in Fig. 7 

(b) the reference bathymetry is provided. Figs. 7 (c-f) show the 

SDB results obtained by Stumpf, Quadratic Stumpf, RTE and 

Sigmoid models, respectively. The visual analysis indicates that 

the different models provide similar results.  

On the other hand, Fig. 8 shows the fitting of the different 

regression models with respect to the training data for both 

depths (25 and 35 m). A considerable dispersion of the training 

data is observed, especially at shallow depths. That is, in the 

relation of 2 band reflectivities for each meter of considered 

depth. Fig. 8 (a) shows the Stumpf linear model, which 

correctly fits the data but only in the linear regime. In Fig. 8 (b), 

the Stumpf model with quadratic regression is presented. In this 

case, the model, likewise, is not appropriate at water depths 

over 25 m, where the curve saturates. Finally, Fig. 8 (c) shows 

the results for the proposed Sigmoid model, where the curve 

perfectly fits the data in both cases, properly modeling the non-

linearity, even at high depths. Therefore, when a more 

challenging scenario is considered, only the Sigmoid model is 

able to properly characterize the saturated values. 

  

 
                                     (a) 

 
                                      (b) 

 
                                      (c) 

 
                                      (d) 
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(a) 

 

(b) 

 

 

 (c) 

  

(d) 

   

(e) 

 
0 m                                          -17.5 m                                     -35 m 

Fig. 7. SDB of the regression models for 25 m (left) and 35 m (right) depth: (a) 

RGB WorldView-2 preprocesed image. (b) Reference bathymetry. (c) Stumpf. 

(d) Stumpf quadratic. (e) Sigmoid.  

 

Quantitatively, Table II shows the RMSE and R2 values in 

both cases. Note that the study has been carried out up to high 

depths and that the dispersion of the training data is large, which 

results in higher values of the measured errors with respect to 

the reference bathymetry. Despite the differences, all the 

models present acceptable metric values. In particular, Sigmoid 

model have the lowest RMSE and both approaches achieve the 

highest R2 value, obtaining superior bathymetric maps. The 

quadratic Stumpf model obtains the worse statistics and, 

therefore, the linear model would be preferably. 

     
 

 
(a) 

  

 
(b) 

  

 
(c) 

Fig. 8. Regression models fit using training data with maximum depth of 25 m 

(upper row) or 35 m (lower row): (a) Stumpf (linear adjustment). (b) Quadratic 

(order 2 polynomial fit). (c) Sigmoid Model proposed in this work (modified 

sigmoid fit).  

 

 
TABLE II 

STATISTIC RESULTS OF THE REGRESSION-BASED BATHYMETRY MODELS 

RESPECT TO THE REFERENCE BATHYMETRY (BEST RESULTS IN BOLD). 

 

Method 
RMSE (m) ↓ R2 ↑ 

25 m 35 m 25 m 35 m 

Stumpf Linear 3.63 5.01 0.744 0.770 

Stumpf Quadratic 4.20 5.33 0.693 0.718 

Sigmoid 3.43 4.36 0.800 0.823 

 

As a conclusion, it can be pointed out that, within the 

empirical-based category, the Sigmoid model is the appropriate 

choice as it is a simple approach that provides excellent 

performance. Sigmoid technique can model the non-linearity 

produced by deep pixels, allowing them to fit the training data 

without the need for depth limitation, as it is necessary in the 

Stumpf model with linear and quadratic regressions. However, 

by limiting the maximum depth to lower values, where the 

energy can properly reach the seabed, all models present a 

similar behavior, as shown in Figure 8. 

• Evaluation of Machine Learning-based Bathymetry Models 

High-resolution bathymetry maps obtained for the two 

groups of implemented Machine Learning techniques 

(Multiclass Classification and Ensemble Learning) are 

presented in Fig. 9 for both cases (25 and 35 m). Fig. 9 (a) 

shows the RGB composite of the WV-2 multispectral image 

atmospherically corrected and without sunglint, including the 1 

meter isobaths lines. The reference bathymetry map is shown in 

Fig. 9 (b). Figs. 9 (c-h) show the results of the machine learning 

models obtained by Support Vector Machine, SVM with 

Gaussian kernel, Decision Tree, K-Nearest Neighbors, 

Subspace KNN and Bagged Tree models, respectively. Clearly, 

Decision Tree provides the worst map when compared to the 

reference in Fig. 9 (b). The rest of models properly estimate 

bathymetry, although it should be noted that the ensemble 

models provide excellent results regardless of the water depth 

and the seafloor topology. 

Comparing both experiments, as expected, better estimations 

are produced for deep waters when models are trained up to 35 
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m. In fact, maps trained up to 25 m (left column) cannot produce 

accurate maps in very deep waters. 

Table III presents the RMSE, and R2 values for each Machine 

Learning based model implemented. Accuracies are high, even 

in the challenging situation of mapping up to 35 m depth. As 

expected, Decision Tree is the worst technique, while models 

implementing Ensemble Learning have the lowest RMSE errors 

and the highest R2 coefficients. Both models can be chosen to 

accurately derive high resolution bathymetric maps. 

Based on the previous results, Ensemble Learning techniques 

improve mapping when compared to single models, thanks to 

the decrease in the variance of the data. This phenomenon is 

observed between KNN and Subspace KNN models, where the 

method implemented by Ensemble Learning has a reduction in 

the RMSE error of 0.255 m (25 m) and 0.279 (35 m). 

 

 

(a) 

 

(b) 

  

 (c) 

  

(d) 

  

(e) 

  

(f) 

  

(g) 

  

(h) 

 
     0 m                                     -17.5 m                                   -35 m 

Fig. 9. SDB of the machine learning models for 25 m (left) and 35 m (right) 

depth: (a) RGB WorldView-2 preprocesed image with 1-m isobaths. (b) 

Reference bathymetry. (c) Decision Tree bathymetry. (d) SVM Gaussian 

bathymetry. (e) SVM lineal bathymetry. (f) KNN bathymetry. (g) Subspace 

KNN bathymetry. (h) Bagged Tree bathymetry. 

 
TABLE III 

STATISTIC RESULTS OF THE MACHINE LEARNING-BASED BATHYMETRY 

MODELS RESPECT TO THE REFERENCE BATHYMETRY (BEST RESULTS IN BOLD). 

 

Method 
RMSE (m) ↓ R2 ↑ 

25 m 35 m 25 m 35 m 

Decision Tree 4.044 4.523 0.695 0.803 

SVM Gaussian 3.060 3.440 0.813 0.883 

SVM Linear 2.675 2.857 0.855 0.918 

KNN 2.361 2.347 0.891 0.946 

Subspace KNN 2.106 2.068 0.915 0.957 

Bagged Tree 2.049 2.077 0.918 0.957 
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• Regression-based versus Machine Learning-based 

Bathymetry Models 

To perform a detailed joint analysis of both family of models, 

the RMSE value computed at each meter has been obtained and 

plotted in Fig. 10. Fig. 10 (a) shows the results when models are 

trained up to 25 m and Fig. 10 (b) up to 35 m. In general, the 

best accuracies are achieved for mid-depth water (10 to 15 m 

range). Clearly, Machine Learning models (blue) outperform 

regression models (red), except for the Decision Tree method. 

regression models cannot provide satisfactory results in very 

deep waters (over 28 m deep) where the penetration capability 

of the spectral channel is insufficient. However, the Sigmoid 

technique stands out for its good performance at medium-high 

depths, providing errors similar to some Machine Learning 

approaches (see Fig. 10(a)). From the regression models, the 

quadratic approach shows fairly low errors at low-medium 

depths. On the other hand, Ensemble models provide excellent 

results with errors below 3 m for most of the water depths, even 

in very deep waters. The minimum RMSE appears between 10 

and 15 m and at higher depths, errors slightly increase with 

depth. Among the models that do not implement ensemble 

techniques, KNN achieves the best performance and follows the 

same error pattern as the ensemble methods. Finally, note the 

evident improvement in accuracy at high depths achieved by 

machine learning models when trained with samples up to 35 

m. Thus, comparing the RMSE errors obtained at depths around 

25 m in both figures, a clear improvement in performance is 

appreciated using more training information around deep 

waters.  

Fig. 11 plots the estimated depth for a representative transect 

section covering different types of benthic classes and reaching 

25 and 35 m deep. The figure includes the measured (reference) 

depth and bathymetry predicted by the 9 algorithms. We can 

appreciate that regression models are, in a greater manner, 

affected by the type of seafloor substrate, showing higher errors 

in sandy areas located in the middle of the transect. Machine 

learning techniques accurately map the water depth all along 

the transect pixels. 

Concerning the robustness and transferability of the different 

algorithms is a critical issue still unresolved and that needs 

future research. It is necessary to take into account the great 

complexity of coastal zones, their heterogeneity and their great 

variability in the concentrations of the different parameters of 

the water column. This fact, together with the unwanted effects 

caused by the sea surface in swell conditions (sunglint), forces 

the choice of the appropriate image and the adjustment of the 

parameters of the models to each area of interest. 

 

• Satellite-Derived Bathymetry Maps for Maspalomas 

The methodology of Fig. 3 has been applied to the 

Maspalomas area. This coastal zone has a steep depth gradient 

in some regions, so that, a few meters from the coast, the 

bathymetry drops abruptly. This insular zone is characterized 

by the usual presence of wind and strong currents, which makes 

difficult to estimate the bathymetry or extract the seabed 

mapping using high resolution remote sensing data. In fact, as  

 

(a) 

 

(b) 

Fig. 10. Comparative RMSE values for the analysis up to: (a) 25 and, (b) 35 m. 

 

shown in Fig. 6, a considerable sunglint appears in the images 

which makes pre-processing tasks critical in this area to obtain 

adequate results. 

Fig. 12 shows the bathymetric maps obtained by the most 

robust SDB methods of each family (regression and machine 

learning models). This particular zone has been selected 

because, as indicated in Section II, it is highly dynamic and 

local authorities are running a project to extract sand from the 

sink area marked in Fig. 12 (a) and to reintroduce it. For this 

reason, periodic monitoring is necessary to estimate the amount 

of sand accumulated near the shore. 

After visual comparison with the reference map in Fig. 12 

(b), it can be seen that both algorithms perform satisfactorily 

although, as expected, the Bagged Tree, as it applies ensemble 

learning techniques, obtains exceptional results, very close to 

the measured depth data. 
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(a) 

 

(b) 

Fig. 11. Depth with respect to the distance from the shore (in pixels) for the 10 

models analyzed (the reference bathymetry is included in green) trained up to: 

(a) 25 m and, (b) 35 m.  

VI. CONCLUSIONS 

Bathymetry is considered a key information for hydrological 

engineering and coastal applications. Traditionally, it is 

obtained via costly and time-consuming shipboard 

echosounders campaigns. However, nowadays, remote sensing 

imagery can be a wide-coverage, low-cost and fast solution for 

the bathymetric mapping.  

In this research, a new methodology is developed to estimate 

bathymetry using very high-resolution multispectral 

Worldview-2/3 imagery, but it is applicable to similar satellites. 

An improved atmospheric and sun-glint correction method is 

presented and validated using the real reflectance measured by 

a field spectroradiometer. Mean RMSE values about 0.5% are 

achieved in representative coastal sites.  

  

(a) (b) 

  

(c) (d) 

 

0 m                                      -12.5 m                                         -25 m 

Fig. 12. Bathymetry of the Natural Reserve of Maspalomas: (a) Original image 

with 6S atmospheric correction and sunglint correction. (b) Reference 

bathymetry. (c) Bathymetry with the Sigmoid model. (d) Bathymetry with the 

Bagged Tree model.  

A. Mapping Application: Monitoring of the Granadilla Port 

Finally, the developed methodology (Fig. 3) has been used, 

operationally, in the context of the Multitemporal European 

Monitoring Program for the Port of Granadilla [53]. The 

research is linked to the monitoring of the bathymetry during 

the construction of the commercial port, and afterwards, within 

the framework of compliance with the evaluation of the 

conservation status of the species and habitats included in the 

European Habitat Directive (Directive 2008/105/CE of the 

Parliament and European Council). To that respect, Fig. 13 

includes two examples of high resolution WV-2/3 bathymetric 

maps used for monitoring the Granadilla Port environment in 

different dates (2011 and 2019). Analogously to the results 

obtained in the other sites (Cabrera and Maspalomas), the 

Bagged Tree bathymetry technique obtains exceptional results. 

On the other hand, to select the most suitable algorithm to 

derive the bathymetric maps, a thorough assessment of 9 

Regression and Machine Learning models (linear Stumpf, 

quadratic Stumpf, Sigmoid, linear SVM, Gaussian SVM, KNN, 

Decision Trees, Bagging Tree and Subspace KNN) has been 

carried out. Note that, to our knowledge, this is the first time 

that a comprehensive evaluation of such a large number of 

techniques is presented. Additionally, a new regression model 

is proposed, and specific machine learning techniques are 

newly applied to derive bathymetry. Furthermore, challenging 

sand 

extraction 

area 
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scenarios have been considered, reaching water depths up to 25 

m and 35 m, unlike the large number of works that only address 

very shallow depths [54]. 

Satellite-derived maps were compared to echosounder depth 

data, and it was demonstrated that machine learning models 

achieved superior robustness and performance than regression 

models, providing lower RMSE errors and higher R2 

coefficients. In particular, ensemble learning approaches 

revealed an outstanding performance in coastal areas down to 

35 m depth, with mean RMSE values around 2 and R2 of 0.957. 

The excellent results provided for the proposed high 

resolution bathymetry mapping methodology has provided a 

systematic framework for the monitoring of coastal areas in 

Balearic and Canary Islands and, specifically, in the frame of 

the multitemporal European Monitoring Program for the new 

Port of Granadilla. 

Therefore, Machine Learning models is one of the emerging 

areas in SDB studies and has a vast potential to develop 

operational SDB models but further research is required to 

discover solutions for sites having highly turbid areas, or 

variable bottom types using all contemporary available data and 

techniques. In summary, an assessment of the potential and 

limitations of these different methods over different coastal 

areas must be made. Also, comparison between these methods 

over the same study sites in a multitemporal manner is, as well, 

essential to obtain a concise knowledge about the robustness 

and difference in their performances. 
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Fig. 13. High Resolution Satellite Bathymetry Mapping obtained by the 

machine learning developed methodology in the framework of Port of 

Granadilla Environmental Monitoring Programme: (a, b) WV-2/3 preprocessed 

imagery: December, 2011 and December 2019. (c, d) Bathymetry obtained with 

the Bagged Tree model (construction of a new port in the period 2010-2020).  
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