Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/106018
Título: | Meta-analysis with few studies and binary data: a bayesian model averaging approach | Autores/as: | Vázquez Polo, Francisco José Negrín Hernández, Miguel Ángel Martel Escobar, María Carmen |
Clasificación UNESCO: | 530202 Modelos econométricos | Palabras clave: | Estadística bayesiana Modelos económetricos Datos |
Fecha de publicación: | 2020 | Proyectos: | Aportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales. | Publicación seriada: | Mathematics | Resumen: | In meta-analysis, the existence of between-sample heterogeneity introduces model uncertainty, which must be incorporated into the inference. We argue that an alternative way to measure this heterogeneity is by clustering the samples and then determining the posterior probability of the cluster models. The meta-inference is obtained as a mixture of all the meta-inferences for the cluster models, where the mixing distribution is the posterior model probabilities. When there are few studies, the number of cluster configurations is manageable, and the meta-inferences can be drawn with BMA techniques. Although this topic has been relatively neglected in the meta-analysis literature, the inference thus obtained accurately reflects the cluster structure of the samples used. In this paper, illustrative examples are given and analysed, using real binary data | URI: | http://hdl.handle.net/10553/106018 | ISSN: | 2227-7390 | DOI: | 10.3390/math8122159 | Fuente: | Mathematics [2227-7390], v. 8(12), 2159 |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 15-dic-2024
Visitas
158
actualizado el 23-nov-2024
Descargas
132
actualizado el 23-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.