Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/106018
Title: | Meta-analysis with few studies and binary data: a bayesian model averaging approach | Authors: | Vázquez Polo, Francisco José Negrín Hernández, Miguel Ángel Martel Escobar, María Carmen |
UNESCO Clasification: | 530202 Modelos econométricos | Keywords: | Estadística bayesiana Modelos económetricos Datos |
Issue Date: | 2020 | Project: | Aportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales. | Journal: | Mathematics | Abstract: | In meta-analysis, the existence of between-sample heterogeneity introduces model uncertainty, which must be incorporated into the inference. We argue that an alternative way to measure this heterogeneity is by clustering the samples and then determining the posterior probability of the cluster models. The meta-inference is obtained as a mixture of all the meta-inferences for the cluster models, where the mixing distribution is the posterior model probabilities. When there are few studies, the number of cluster configurations is manageable, and the meta-inferences can be drawn with BMA techniques. Although this topic has been relatively neglected in the meta-analysis literature, the inference thus obtained accurately reflects the cluster structure of the samples used. In this paper, illustrative examples are given and analysed, using real binary data | URI: | http://hdl.handle.net/10553/106018 | ISSN: | 2227-7390 | DOI: | 10.3390/math8122159 | Source: | Mathematics [2227-7390], v. 8(12), 2159 |
Appears in Collections: | Artículos |
WEB OF SCIENCETM
Citations
3
checked on Dec 15, 2024
Page view(s)
158
checked on Nov 23, 2024
Download(s)
132
checked on Nov 23, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.