Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/106018
Título: Meta-analysis with few studies and binary data: a bayesian model averaging approach
Autores/as: Vázquez Polo, Francisco José 
Negrín Hernández, Miguel Ángel 
Martel Escobar, María Carmen 
Clasificación UNESCO: 530202 Modelos econométricos
Palabras clave: Estadística bayesiana
Modelos económetricos
Datos
Fecha de publicación: 2020
Proyectos: Aportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales. 
Publicación seriada: Mathematics 
Resumen: In meta-analysis, the existence of between-sample heterogeneity introduces model uncertainty, which must be incorporated into the inference. We argue that an alternative way to measure this heterogeneity is by clustering the samples and then determining the posterior probability of the cluster models. The meta-inference is obtained as a mixture of all the meta-inferences for the cluster models, where the mixing distribution is the posterior model probabilities. When there are few studies, the number of cluster configurations is manageable, and the meta-inferences can be drawn with BMA techniques. Although this topic has been relatively neglected in the meta-analysis literature, the inference thus obtained accurately reflects the cluster structure of the samples used. In this paper, illustrative examples are given and analysed, using real binary data
URI: https://accedacris.ulpgc.es/handle/10553/106018
ISSN: 2227-7390
DOI: 10.3390/math8122159
Fuente: Mathematics [2227-7390], v. 8(12), 2159
Colección:Artículos
Thumbnail
Adobe PDF (369,65 kB)
Show full item record

WEB OF SCIENCETM
Citations

3
checked on May 25, 2025

Page view(s)

170
checked on Dec 28, 2024

Download(s)

141
checked on Dec 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.