Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75670
Título: Significant labels in sentiment analysis of online customer reviews of airlines
Autores/as: Mohamed Zaki Ahmed, Ayat 
Rodríguez Díaz, Manuel 
Clasificación UNESCO: 531212 Transportes y comunicaciones
Palabras clave: Airline
Content Analysis
Key Label
Machine Learning
Online Customer Review, et al.
Fecha de publicación: 2020
Publicación seriada: Sustainability (Switzerland) 
Resumen: Sentiment analysis is becoming an essential tool for analyzing the contents of online customer reviews. This analysis involves identifying the necessary labels to determine whether a comment is positive, negative, or neutral, and the intensity with which the customer’s sentiment is expressed. Based on this information, service companies such as airlines can design and implement a communication strategy to improve their customers’ image of the company and the service received. This study proposes a methodology to identify the significant labels that represent the customers’ sentiments, based on a quantitative variable, that is, the overall rating. The key labels were identified in the comments’ titles, which usually include the words that best define the customer experience. This database was applied to more extensive online customer reviews in order to validate that the identified tags are meaningful for assessing the sentiments expressed in them. The results show that the labels elaborated from the titles are valid for analyzing the feelings in the comments, thus, simplifying the labels to be taken into account when carrying out a sentiment analysis of customers’ online comments.
URI: http://hdl.handle.net/10553/75670
DOI: 10.3390/su12208683
Fuente: Sustainability (Switzerland)[EISSN 2071-1050],v. 12 (20), p. 1-18, (Octubre 2020)
Colección:Artículos
miniatura
Adobe PDF (403,9 kB)
Vista completa

Citas SCOPUSTM   

18
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 17-nov-2024

Visitas

152
actualizado el 29-jun-2024

Descargas

149
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.