Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74927
Título: | Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions | Autores/as: | Wang, Dabin Azofra Mesa, Luis Miguel Harb, Moussab Cavallo, Luigi Zhang, Xinyi Suryanto, Bryan H. R. MacFarlane, Douglas R. |
Clasificación UNESCO: | 221001 Catálisis | Fecha de publicación: | 2018 | Publicación seriada: | ChemSusChem | Resumen: | The electrochemical nitrogen reduction reaction (NRR) under ambient conditions is a promising alternative to the traditional energy‐intensive Haber–Bosch process to produce NH3. The challenge is to achieve a sufficient energy efficiency, yield rate, and selectivity to make the process practical. Here, we demonstrate that Ru nanoparticles (NPs) enable NRR in 0.01 m HCl aqueous solution at very high energy efficiency, that is, very low overpotentials. Remarkably, the NRR occurs at a potential close to or even above the H+/H2 reversible potential, significantly enhancing the NRR selectivity versus the production of H2. NH3 yield rates as high as ≈5.5 mg h−1 m−2 at 20 °C and 21.4 mg h−1 m−2 at 60 °C were achieved at a redox potential (E) of −100 mV versus the reversible hydrogen electrode (RHE), whereas a highest Faradaic efficiency (FE) of ≈5.4 % is achievable at E=+10 mV vs. RHE. This work demonstrates the potential use of Ru NPs as an efficient catalyst for NRR at ambient conditions. This ability to catalyze NRR at potentials near or above RHE is imperative in improving the NRR selectivity towards a practical process as well as rendering the H2 viable as byproduct. Density functional theory calculations of the mechanism suggest that the efficient NRR process occurring on these predominantly Ru (0 0 1) surfaces is catalyzed by a dissociative mechanism. | URI: | http://hdl.handle.net/10553/74927 | ISSN: | 1864-5631 | DOI: | 10.1002/cssc.201801632 | Fuente: | ChemSusChem [ISSN 1864-5631], v. 11, p. 3416 –3422 |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
144
actualizado el 15-dic-2024
Visitas
91
actualizado el 02-mar-2024
Descargas
114
actualizado el 02-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.