Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74927
Campo DC Valoridioma
dc.contributor.authorWang, Dabinen_US
dc.contributor.authorAzofra Mesa, Luis Miguelen_US
dc.contributor.authorHarb, Moussaben_US
dc.contributor.authorCavallo, Luigien_US
dc.contributor.authorZhang, Xinyien_US
dc.contributor.authorSuryanto, Bryan H. R.en_US
dc.contributor.authorMacFarlane, Douglas R.en_US
dc.date.accessioned2020-10-21T11:35:02Z-
dc.date.available2020-10-21T11:35:02Z-
dc.date.issued2018en_US
dc.identifier.issn1864-5631en_US
dc.identifier.urihttp://hdl.handle.net/10553/74927-
dc.description.abstractThe electrochemical nitrogen reduction reaction (NRR) under ambient conditions is a promising alternative to the traditional energy‐intensive Haber–Bosch process to produce NH3. The challenge is to achieve a sufficient energy efficiency, yield rate, and selectivity to make the process practical. Here, we demonstrate that Ru nanoparticles (NPs) enable NRR in 0.01 m HCl aqueous solution at very high energy efficiency, that is, very low overpotentials. Remarkably, the NRR occurs at a potential close to or even above the H+/H2 reversible potential, significantly enhancing the NRR selectivity versus the production of H2. NH3 yield rates as high as ≈5.5 mg h−1 m−2 at 20 °C and 21.4 mg h−1 m−2 at 60 °C were achieved at a redox potential (E) of −100 mV versus the reversible hydrogen electrode (RHE), whereas a highest Faradaic efficiency (FE) of ≈5.4 % is achievable at E=+10 mV vs. RHE. This work demonstrates the potential use of Ru NPs as an efficient catalyst for NRR at ambient conditions. This ability to catalyze NRR at potentials near or above RHE is imperative in improving the NRR selectivity towards a practical process as well as rendering the H2 viable as byproduct. Density functional theory calculations of the mechanism suggest that the efficient NRR process occurring on these predominantly Ru (0 0 1) surfaces is catalyzed by a dissociative mechanism.en_US
dc.languageengen_US
dc.relation.ispartofChemSusChemen_US
dc.sourceChemSusChem [ISSN 1864-5631], v. 11, p. 3416 –3422en_US
dc.subject221001 Catálisisen_US
dc.titleEnergy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/cssc.201801632en_US
dc.description.lastpage3422en_US
dc.identifier.issue19-
dc.description.firstpage3416en_US
dc.relation.volume11en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.description.sjr2,367
dc.description.jcr7,804
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.orcid0000-0003-4974-1670-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameAzofra Mesa, Luis Miguel-
Colección:Artículos
miniatura
PDF (preprint)
Adobe PDF (2,08 MB)
Vista resumida

Visitas

91
actualizado el 02-mar-2024

Descargas

114
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.