Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74296
Título: Combining Neural Networks and Hidden Markov Models for automatic detection of pathologies
Autores/as: Alonso Hernández, Jesús Bernardino 
Carmona-Duarte, Cristina 
de Leon, J.
Ferrer Ballester, Miguel Ángel 
Clasificación UNESCO: 3311 tecnología de la instrumentación
Fecha de publicación: 2002
Editor/a: Vutium
Publicación seriada: Biosignál (Brno) 
Conferencia: 16th International EURASIP Conference BIOSIGNAL 2002 
Resumen: In the current panorama the conclusive identification of a laryngeal pathology relies inevitably on the observation of the vocal folds by means of laryngoscopical techniques. This inspection technique is inconvenient for a number of reasons,such as its high cost, the duration of the inspection, and. above all, the, fact that it is an invasive technique. This paper looks into a voice recognition system which allows the automatic detection of dysfunction in phonation. The voice signal is parametrized by means of the classic parameters (Hitter, Shimmer, Energy Balance, Spectral Distance) and new Hi;h Order Statistics (HOS) based parameters. The classifier is based in combining of Hidden Markov Models (HMM) and Neural Networks (NN).
URI: http://hdl.handle.net/10553/74296
ISBN: 80-214-2120-7
ISSN: 1211-412X
Fuente: Analysis of Biomedical Signals and Images, Proceedings [ISSN 1211-412X], p. 466-468, (2002)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.