Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74296
Título: | Combining Neural Networks and Hidden Markov Models for automatic detection of pathologies | Autores/as: | Alonso Hernández, Jesús Bernardino Carmona-Duarte, Cristina de Leon, J. Ferrer Ballester, Miguel Ángel |
Clasificación UNESCO: | 3311 tecnología de la instrumentación | Fecha de publicación: | 2002 | Editor/a: | Vutium | Publicación seriada: | Biosignál (Brno) | Conferencia: | 16th International EURASIP Conference BIOSIGNAL 2002 | Resumen: | In the current panorama the conclusive identification of a laryngeal pathology relies inevitably on the observation of the vocal folds by means of laryngoscopical techniques. This inspection technique is inconvenient for a number of reasons,such as its high cost, the duration of the inspection, and. above all, the, fact that it is an invasive technique. This paper looks into a voice recognition system which allows the automatic detection of dysfunction in phonation. The voice signal is parametrized by means of the classic parameters (Hitter, Shimmer, Energy Balance, Spectral Distance) and new Hi;h Order Statistics (HOS) based parameters. The classifier is based in combining of Hidden Markov Models (HMM) and Neural Networks (NN). | URI: | http://hdl.handle.net/10553/74296 | ISBN: | 80-214-2120-7 | ISSN: | 1211-412X | Fuente: | Analysis of Biomedical Signals and Images, Proceedings [ISSN 1211-412X], p. 466-468, (2002) |
Colección: | Actas de congresos |
Visitas
93
actualizado el 17-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.