Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72292
Título: Restoration of retinal images using anisotropic diffusion like algorithms
Autores/as: Ben Abdallah, Mariem
Malek, Jihene
Tourki, Rached
Krissian , Karl 
Clasificación UNESCO: 1206 Análisis numérico
220990 Tratamiento digital. Imágenes
Palabras clave: Anisotropic diffusion
Fundus images
Local statistics of the noise
Restoration
Fecha de publicación: 2012
Conferencia: 2012 International Conference on Computer Vision in Remote Sensing, CVRS 2012 
Resumen: In image processing by the partial differential equations (PDEs), the first and the simplest models to have and to use are based on linear diffusion. The common difficulty of linear filters is the excessive smoothing which makes track edges difficult. Therefore, we can affirm that any improvement of these linear models must be carried out inside the operator of diffusion, thus sacrificing their linearity. We will see how these difficulties can be overcome by the use of the nonlinear models. The work achieved in this context will make the subject of the following paper. This document treats the automatic preprocessing of retinal vascular network in fundus images in order to improve the interpretation of the images for the doctors diagnosis. We propose to deal with the image restoration using original equation of anisotropic diffusion. Compared to traditional anisotropic diffusion filters, it has interesting capacities of smoothing, like the expected conservation of the details and contours, and especially a more continuous smoothing intra-area, avoiding the pitfall of stairs or of the mosaics.
URI: http://hdl.handle.net/10553/72292
ISBN: 978-1-4673-1272-1
DOI: 10.1109/CVRS.2012.6421244
Fuente: Proceedings of International Conference on Computer Vision in Remote Sensing, CVRS 2012, p. 116-121, (Diciembre 2012)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Visitas

42
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.