Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72292
Campo DC Valoridioma
dc.contributor.authorBen Abdallah, Mariemen_US
dc.contributor.authorMalek, Jiheneen_US
dc.contributor.authorTourki, Racheden_US
dc.contributor.authorKrissian , Karlen_US
dc.date.accessioned2020-05-12T15:49:54Z-
dc.date.available2020-05-12T15:49:54Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-1272-1en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/72292-
dc.description.abstractIn image processing by the partial differential equations (PDEs), the first and the simplest models to have and to use are based on linear diffusion. The common difficulty of linear filters is the excessive smoothing which makes track edges difficult. Therefore, we can affirm that any improvement of these linear models must be carried out inside the operator of diffusion, thus sacrificing their linearity. We will see how these difficulties can be overcome by the use of the nonlinear models. The work achieved in this context will make the subject of the following paper. This document treats the automatic preprocessing of retinal vascular network in fundus images in order to improve the interpretation of the images for the doctors diagnosis. We propose to deal with the image restoration using original equation of anisotropic diffusion. Compared to traditional anisotropic diffusion filters, it has interesting capacities of smoothing, like the expected conservation of the details and contours, and especially a more continuous smoothing intra-area, avoiding the pitfall of stairs or of the mosaics.en_US
dc.languageengen_US
dc.sourceProceedings of International Conference on Computer Vision in Remote Sensing, CVRS 2012, p. 116-121, (Diciembre 2012)en_US
dc.subject1206 Análisis numéricoen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherAnisotropic diffusionen_US
dc.subject.otherFundus imagesen_US
dc.subject.otherLocal statistics of the noiseen_US
dc.subject.otherRestorationen_US
dc.titleRestoration of retinal images using anisotropic diffusion like algorithmsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2012 International Conference on Computer Vision in Remote Sensing, CVRS 2012en_US
dc.identifier.doi10.1109/CVRS.2012.6421244en_US
dc.identifier.scopus84874410108-
dc.contributor.authorscopusid36450046200-
dc.contributor.authorscopusid16203443800-
dc.contributor.authorscopusid6603352243-
dc.contributor.authorscopusid6602218913-
dc.description.lastpage121en_US
dc.description.firstpage116en_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-1-4673-1274-5-
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2012en_US
dc.identifier.conferenceidevents121466-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate16-12-2012-
crisitem.event.eventsenddate18-12-2012-
crisitem.author.fullNameKrissian , Karl-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

9
actualizado el 30-mar-2025

Visitas

42
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.