Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69997
Título: Imaging method for Noise Removal and segmentation of Skin Lesions from Dermoscopic Images
Autores/as: Gupta, Ashmita
Bhatnagar, Mansi
Issac, Ashish
Dutta, Malay Kishore
Travieso González, Carlos Manuel 
Clasificación UNESCO: 320106 Dermatología
320101 Oncología
3314 Tecnología médica
Palabras clave: Edge Detection
Inpainting
Lesion Segmentation
Mathematical Morphology
Melanoma
Fecha de publicación: 2019
Publicación seriada: Acm International Conference Proceeding Series
Conferencia: 2nd International Conference on Applications of Intelligent Systems, APPIS 2019 
Resumen: Melanoma is a fatal skin anomaly which can be treated if diagnosed under benign condition. The accuracy of cancer detection depends directly on the accuracy of lesion segmentation. This work proposes an imaging method for lesion segmentation from dermoscopic images using inpainting, edge detection and intensity based threshold. The use of mathematical morphological operations has been done to remove noisy pixels post segmentation. The use of proposed techniques has made the method less complex and computationally efficient and can work in real-time. An average Jaccard index value of 89.2383% and correlation coefficient of 92.5271% has been achieved using the proposed method. The results are convincing and guides in the direction of usage of proposed algorithm as subset of some real time application for melanoma detection.
URI: http://hdl.handle.net/10553/69997
ISBN: 9781450360852
DOI: 10.1145/3309772.3309788
Fuente: ACM International Conference Proceeding Series
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

126
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.