Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69997
Título: | Imaging method for Noise Removal and segmentation of Skin Lesions from Dermoscopic Images | Autores/as: | Gupta, Ashmita Bhatnagar, Mansi Issac, Ashish Dutta, Malay Kishore Travieso González, Carlos Manuel |
Clasificación UNESCO: | 320106 Dermatología 320101 Oncología 3314 Tecnología médica |
Palabras clave: | Edge Detection Inpainting Lesion Segmentation Mathematical Morphology Melanoma |
Fecha de publicación: | 2019 | Publicación seriada: | Acm International Conference Proceeding Series | Conferencia: | 2nd International Conference on Applications of Intelligent Systems, APPIS 2019 | Resumen: | Melanoma is a fatal skin anomaly which can be treated if diagnosed under benign condition. The accuracy of cancer detection depends directly on the accuracy of lesion segmentation. This work proposes an imaging method for lesion segmentation from dermoscopic images using inpainting, edge detection and intensity based threshold. The use of mathematical morphological operations has been done to remove noisy pixels post segmentation. The use of proposed techniques has made the method less complex and computationally efficient and can work in real-time. An average Jaccard index value of 89.2383% and correlation coefficient of 92.5271% has been achieved using the proposed method. The results are convincing and guides in the direction of usage of proposed algorithm as subset of some real time application for melanoma detection. | URI: | http://hdl.handle.net/10553/69997 | ISBN: | 9781450360852 | DOI: | 10.1145/3309772.3309788 | Fuente: | ACM International Conference Proceeding Series |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 24-nov-2024
Visitas
126
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.