Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69995
Título: Automatic framework for extraction of red lesion using gabor filter from fundus image
Autores/as: Singh, Astha
Srivastava, Shubhi
Yadav, Anjali
Dutta, Malay Kishore
Travieso González, Carlos Manuel 
Clasificación UNESCO: 320109 Oftalmología
3314 Tecnología médica
Palabras clave: Extraction
Fundus Image
Image Processing
Morphological Operations
Red Lesions
Fecha de publicación: 2019
Publicación seriada: Acm International Conference Proceeding Series
Conferencia: 2nd International Conference on Applications of Intelligent Systems, APPIS 2019 
Resumen: The paper proposes an automated computer vision method for detection of red lesions present in the fundus images. In case of Diabetic Retinopathy, red lesions constitute of both microaneurysms and haemorrhages. In the proposed work, the possible candidate pixels similar to red lesions with respect to intensity levels are identified and subjected to a logical subtraction operation that leads to desirable result in segmenting out the lesions only. Strategic use of Gabor filter helps in identification of blood vessels and geometrical features-based thresholding is applied to extract red lesions efficiently and make the algorithm effective. Developed algorithm is tested on a comprehensive digital fundus image database and the obtained results are encouraging with a high accuracy and has low computation cost and can be deployed for the detection of the red lesions from fundus images.
URI: http://hdl.handle.net/10553/69995
ISBN: 9781450360852
DOI: 10.1145/3309772.3309785
Fuente: Proceedings Of 2Nd International Conference On Applications Of Intelligent Systems (Appis 2019), (2019)
Colección:Actas de congresos
Vista completa

Visitas

116
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.