Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69995
Título: | Automatic framework for extraction of red lesion using gabor filter from fundus image | Autores/as: | Singh, Astha Srivastava, Shubhi Yadav, Anjali Dutta, Malay Kishore Travieso González, Carlos Manuel |
Clasificación UNESCO: | 320109 Oftalmología 3314 Tecnología médica |
Palabras clave: | Extraction Fundus Image Image Processing Morphological Operations Red Lesions |
Fecha de publicación: | 2019 | Publicación seriada: | Acm International Conference Proceeding Series | Conferencia: | 2nd International Conference on Applications of Intelligent Systems, APPIS 2019 | Resumen: | The paper proposes an automated computer vision method for detection of red lesions present in the fundus images. In case of Diabetic Retinopathy, red lesions constitute of both microaneurysms and haemorrhages. In the proposed work, the possible candidate pixels similar to red lesions with respect to intensity levels are identified and subjected to a logical subtraction operation that leads to desirable result in segmenting out the lesions only. Strategic use of Gabor filter helps in identification of blood vessels and geometrical features-based thresholding is applied to extract red lesions efficiently and make the algorithm effective. Developed algorithm is tested on a comprehensive digital fundus image database and the obtained results are encouraging with a high accuracy and has low computation cost and can be deployed for the detection of the red lesions from fundus images. | URI: | http://hdl.handle.net/10553/69995 | ISBN: | 9781450360852 | DOI: | 10.1145/3309772.3309785 | Fuente: | Proceedings Of 2Nd International Conference On Applications Of Intelligent Systems (Appis 2019), (2019) |
Colección: | Actas de congresos |
Visitas
116
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.