Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69995
Campo DC Valoridioma
dc.contributor.authorSingh, Asthaen_US
dc.contributor.authorSrivastava, Shubhien_US
dc.contributor.authorYadav, Anjalien_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2020-02-05T12:51:49Z-
dc.date.available2020-02-05T12:51:49Z-
dc.date.issued2019en_US
dc.identifier.isbn9781450360852en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69995-
dc.description.abstractThe paper proposes an automated computer vision method for detection of red lesions present in the fundus images. In case of Diabetic Retinopathy, red lesions constitute of both microaneurysms and haemorrhages. In the proposed work, the possible candidate pixels similar to red lesions with respect to intensity levels are identified and subjected to a logical subtraction operation that leads to desirable result in segmenting out the lesions only. Strategic use of Gabor filter helps in identification of blood vessels and geometrical features-based thresholding is applied to extract red lesions efficiently and make the algorithm effective. Developed algorithm is tested on a comprehensive digital fundus image database and the obtained results are encouraging with a high accuracy and has low computation cost and can be deployed for the detection of the red lesions from fundus images.en_US
dc.languageengen_US
dc.relation.ispartofAcm International Conference Proceeding Seriesen_US
dc.sourceProceedings Of 2Nd International Conference On Applications Of Intelligent Systems (Appis 2019), (2019)en_US
dc.subject320109 Oftalmologíaen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherExtractionen_US
dc.subject.otherFundus Imageen_US
dc.subject.otherImage Processingen_US
dc.subject.otherMorphological Operationsen_US
dc.subject.otherRed Lesionsen_US
dc.titleAutomatic framework for extraction of red lesion using gabor filter from fundus imageen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2nd International Conference on Applications of Intelligent Systems, APPIS 2019en_US
dc.identifier.doi10.1145/3309772.3309785en_US
dc.identifier.scopus85070539354-
dc.identifier.isi000519037800013-
dc.contributor.authorscopusid57212846259-
dc.contributor.authorscopusid57210393499-
dc.contributor.authorscopusid57195513394-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Singh, A-
dc.contributor.wosstandardWOS:Srivastava, S-
dc.contributor.wosstandardWOS:Yadav, A-
dc.contributor.wosstandardWOS:Dutta, MK-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.date.coverdate2019en_US
dc.identifier.conferenceidevents121188-
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate07-01-2019-
crisitem.event.eventsenddate09-01-2019-
Colección:Actas de congresos
Vista resumida

Visitas

131
actualizado el 01-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.