Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69793
Título: | Adaptive threshold based automated identification of severity of diabetic macular edema from retinal images | Autores/as: | Gupta, Varun Sengar, Namita Dutta, Malay Kishore Travieso González, Carlos Manuel |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Diabetic Macular Edema Exudates Macula Morphological Optic Disc, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | Frontiers in Artificial Intelligence and Applications | Conferencia: | 1st International Conference on Applications of Intelligent Systems, APPIS 2018 | Resumen: | In this paper an algorithm is proposed for detection of severity of Diabetic Macular Edema (DME) from Retinal Images, which are invariant to image rotation. The proposed work includes detection of optic disc, macula, exudates, region of interest localization and a level indicator which indicates the severity of disease as severe, moderate or normal DME. Rotation Invariant detection of macula makes this method efficient. A set of NPDR data of fundus image of an eye is used to test the proposed algorithm. The results show a better comprehensive performance of disease severity checker and computationally efficient. | URI: | http://hdl.handle.net/10553/69793 | ISBN: | 9781614999287 | ISSN: | 0922-6389 | Fuente: | Frontiers in Artificial Intelligence and Applications [ISSN 0922-6389], v. 310, p. 336-344 |
Colección: | Actas de congresos |
Visitas
65
actualizado el 08-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.