Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69756
Título: | Biometric analysis for the recognition of spider species according to their webs | Autores/as: | Batista-Plaza, David Travieso, Carlos M. Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Classification System Image Processing Image Segmentation Pattern Recognition |
Fecha de publicación: | 2018 | Publicación seriada: | 2017 10Th International Conference On Contemporary Computing, Ic3 2017 | Conferencia: | 10th International Conference on Contemporary Computing, IC3 2017 | Resumen: | This work presents a biometric approach for spider identification based on transform domain and Support Vector Machines as classifier. The dataset is composed by 185 images of spider web. The goal of this work is to use the structure of spider web for identifying the kind of spider. The experiments were done using two different of segmentation blocks and the analysis of the whole and center of the spider web. The best accuracy is reached after to run the different combinations. | URI: | http://hdl.handle.net/10553/69756 | ISBN: | 9781538630778 | DOI: | 10.1109/IC3.2017.8284286 | Fuente: | 2017 10th International Conference on Contemporary Computing, IC3 2017,v. 2018-January, p. 1-6 |
Colección: | Actas de congresos |
Visitas
83
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.