Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69756
Título: Biometric analysis for the recognition of spider species according to their webs
Autores/as: Batista-Plaza, David
Travieso, Carlos M. 
Dutta, Malay Kishore
Singh, Anushikha
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Classification System
Image Processing
Image Segmentation
Pattern Recognition
Fecha de publicación: 2018
Publicación seriada: 2017 10Th International Conference On Contemporary Computing, Ic3 2017
Conferencia: 10th International Conference on Contemporary Computing, IC3 2017 
Resumen: This work presents a biometric approach for spider identification based on transform domain and Support Vector Machines as classifier. The dataset is composed by 185 images of spider web. The goal of this work is to use the structure of spider web for identifying the kind of spider. The experiments were done using two different of segmentation blocks and the analysis of the whole and center of the spider web. The best accuracy is reached after to run the different combinations.
URI: http://hdl.handle.net/10553/69756
ISBN: 9781538630778
DOI: 10.1109/IC3.2017.8284286
Fuente: 2017 10th International Conference on Contemporary Computing, IC3 2017,v. 2018-January, p. 1-6
Colección:Actas de congresos
Vista completa

Visitas

83
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.