Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/63421
Título: An Approach to Rain Detection Using Sobel Image Pre-processing and Convolutional Neuronal Networks
Autores/as: Godoy-Rosario, José A. 
Ravelo García, Antonio Gabriel 
Quintana Morales, Pedro José 
Navarro Mesa, Juan Luis 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Rain fall detection
Sobel image processing
Convolutional Neuronal Network
Fecha de publicación: 2019
Editor/a: Springer
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 15th International Work-Conference on Artificial Neural Networks (IWANN) 
15th International Work-Conference on Artificial Neural Networks, IWANN 2019 
Resumen: Rain fall detection has been an important factor under study in a multitude of applications: estimation offloods in order to minimize damage before an environmental risk situation, rain removal from images, agriculture field, etc. Actually, there are numerous methods implemented in order to try to solve this issue. For example, some of them are based on the traditional weather station or in the use of radar technology. In this work, we propose an approach to rain detection using image processing techniques and Convolutional Neuronal Networks (CNN). In order to improve the results of classification, images in rain and no rain conditions are pre-processed using the Sobel algorithm to detect edges. The architecture that defines the CNN is LeNet and it is carried out with three convolutional layers, three pooling layers and a soft max layer. With the proposed method, it is possible to detect the presence of rain in certain region of the image with an accuracy of 89%. The purpose of the proposed system is just to complete with a different added value, other traditional methods for detection of rain.
URI: http://hdl.handle.net/10553/63421
ISBN: 978-3-030-20520-1
ISSN: 0302-9743
DOI: 10.1007/978-3-030-20521-8_3
Fuente: Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11506 LNCS, p. 27-38
Colección:Capítulo de libro
Adobe PDF (1,31 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.