Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/63421
DC FieldValueLanguage
dc.contributor.authorGodoy-Rosario, José A.en_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.contributor.authorQuintana Morales, Pedro Joséen_US
dc.contributor.authorNavarro Mesa, Juan Luisen_US
dc.date.accessioned2020-01-22T10:20:06Z-
dc.date.available2020-01-22T10:20:06Z-
dc.date.issued2019en_US
dc.identifier.isbn978-3-030-20520-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/63421-
dc.description.abstractRain fall detection has been an important factor under study in a multitude of applications: estimation offloods in order to minimize damage before an environmental risk situation, rain removal from images, agriculture field, etc. Actually, there are numerous methods implemented in order to try to solve this issue. For example, some of them are based on the traditional weather station or in the use of radar technology. In this work, we propose an approach to rain detection using image processing techniques and Convolutional Neuronal Networks (CNN). In order to improve the results of classification, images in rain and no rain conditions are pre-processed using the Sobel algorithm to detect edges. The architecture that defines the CNN is LeNet and it is carried out with three convolutional layers, three pooling layers and a soft max layer. With the proposed method, it is possible to detect the presence of rain in certain region of the image with an accuracy of 89%. The purpose of the proposed system is just to complete with a different added value, other traditional methods for detection of rain.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceAdvances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11506 LNCS, p. 27-38en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherRain fall detectionen_US
dc.subject.otherSobel image processingen_US
dc.subject.otherConvolutional Neuronal Networken_US
dc.titleAn Approach to Rain Detection Using Sobel Image Pre-processing and Convolutional Neuronal Networksen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBook parten_US
dc.relation.conference15th International Work-Conference on Artificial Neural Networks (IWANN)
dc.relation.conference15th International Work-Conference on Artificial Neural Networks, IWANN 2019
dc.identifier.doi10.1007/978-3-030-20521-8_3en_US
dc.identifier.scopus85067452516-
dc.identifier.isi000490721600003-
dc.contributor.authorscopusid57209344906-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid16069019600-
dc.contributor.authorscopusid9634488300-
dc.identifier.eissn1611-3349-
dc.description.lastpage38en_US
dc.description.firstpage27en_US
dc.relation.volume11506en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.contributor.daisngid31632108-
dc.contributor.daisngid1986395-
dc.contributor.daisngid4522291-
dc.contributor.daisngid2630721-
dc.identifier.eisbn978-3-030-20521-8-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Godoy-Rosario, JA-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.contributor.wosstandardWOS:Quintana-Morales, PJ-
dc.contributor.wosstandardWOS:Navarro-Mesa, JL-
dc.date.coverdate2019en_US
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.conferenceidevents121654-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,427
dc.description.sjrqQ2
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.orcid0000-0001-8462-8855-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameGodoy Rosario, José Antonio-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
crisitem.author.fullNameQuintana Morales, Pedro José-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.event.eventsstartdate12-06-2019-
crisitem.event.eventsstartdate12-06-2019-
crisitem.event.eventsenddate14-06-2019-
crisitem.event.eventsenddate14-06-2019-
Appears in Collections:Capítulo de libro
Adobe PDF (1,31 MB)
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 24, 2024

Page view(s)

148
checked on Feb 10, 2024

Download(s)

1
checked on Feb 10, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.