Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60052
Título: Dementia Detection and Classification from MRI Images Using Deep Neural Networks and Transfer Learning
Autores/as: Bidani, Amen
Gouider, Mohamed Salah
Travieso-González, Carlos M. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Dementia
MRI
Bag of feature
K-means
Deep Machine Learning, et al.
Fecha de publicación: 2019
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 15th International Work-Conference on Artificial Neural Networks, (IWANN 2019) 
Resumen: In this paper, we present a new approach in the field of Deep Machine Learning, that comprises both DCNN (Deep Convolutional Neural Network) model and Transfer Learning model to detect and classify the dementia disease. This neurodegenerative disease which is described as a decline in memory, language, and other problems of cognitive skills to make daily activities, is identified in this study by using MRI (Magnetic Resonance Imaging) brain scans from OASIS dataset. These MRI brain scans are normalized before the image extraction with Bag of the features and the Learning classification methods into no-demented, very mild demented, and mild demented. Results showed that the DCNN model achieved significant accuracy for better Dementia diagnosis.
URI: http://hdl.handle.net/10553/60052
ISBN: 978-3-030-20520-1
ISSN: 0302-9743
DOI: 10.1007/978-3-030-20521-8_75
Fuente: Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11506 LNCS, p. 925-933
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

12
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 15-dic-2024

Visitas

99
actualizado el 17-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.