Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/60052
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Bidani, Amen | en_US |
dc.contributor.author | Gouider, Mohamed Salah | en_US |
dc.contributor.author | Travieso-González, Carlos M. | en_US |
dc.date.accessioned | 2020-01-10T10:59:14Z | - |
dc.date.available | 2020-01-10T10:59:14Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.isbn | 978-3-030-20520-1 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/60052 | - |
dc.description.abstract | In this paper, we present a new approach in the field of Deep Machine Learning, that comprises both DCNN (Deep Convolutional Neural Network) model and Transfer Learning model to detect and classify the dementia disease. This neurodegenerative disease which is described as a decline in memory, language, and other problems of cognitive skills to make daily activities, is identified in this study by using MRI (Magnetic Resonance Imaging) brain scans from OASIS dataset. These MRI brain scans are normalized before the image extraction with Bag of the features and the Learning classification methods into no-demented, very mild demented, and mild demented. Results showed that the DCNN model achieved significant accuracy for better Dementia diagnosis. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11506 LNCS, p. 925-933 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Dementia | en_US |
dc.subject.other | MRI | en_US |
dc.subject.other | Bag of feature | en_US |
dc.subject.other | K-means | en_US |
dc.subject.other | Deep Machine Learning | en_US |
dc.subject.other | DCNN | en_US |
dc.subject.other | Transfer Learning | en_US |
dc.title | Dementia Detection and Classification from MRI Images Using Deep Neural Networks and Transfer Learning | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | Book part | en_US |
dc.relation.conference | 15th International Work-Conference on Artificial Neural Networks, (IWANN 2019) | en_US |
dc.identifier.doi | 10.1007/978-3-030-20521-8_75 | en_US |
dc.identifier.scopus | 85067466427 | - |
dc.identifier.isi | 000490721600074 | - |
dc.contributor.authorscopusid | 57209335954 | - |
dc.contributor.authorscopusid | 56035703100 | - |
dc.contributor.authorscopusid | 57201316633 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.description.lastpage | 933 | en_US |
dc.description.firstpage | 925 | en_US |
dc.relation.volume | 11506 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.contributor.daisngid | 31695029 | - |
dc.contributor.daisngid | 2232331 | - |
dc.contributor.daisngid | 265761 | - |
dc.identifier.eisbn | 978-3-030-20521-8 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Bidani, A | - |
dc.contributor.wosstandard | WOS:Gouider, MS | - |
dc.contributor.wosstandard | WOS:Travieso-Gonzalez, CM | - |
dc.date.coverdate | 2019 | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.conferenceid | events121654 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,427 | |
dc.description.sjrq | Q2 | |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 12-06-2019 | - |
crisitem.event.eventsenddate | 14-06-2019 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Capítulo de libro |
Citas SCOPUSTM
14
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 30-mar-2025
Visitas
99
actualizado el 17-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.