Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/57515
Título: A novel hyperspectral anomaly detection algorithm for real-time applications with push-broom sensors
Autores/as: Horstrand, Pablo
Díaz Martín, María 
Guerra Hernández, Raúl Celestino 
López Suárez, Sebastián 
López Feliciano, José Francisco 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anomaly detection (AD)
Hyperspectral imagery
Onboard processing
Push-broom sensor
Unmanned aerial vehicle (UAV)
Fecha de publicación: 2019
Publicación seriada: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
Resumen: Most practical hyperspectral anomaly detection (AD) applications require real-time processing for detecting complex targets from their background. This is especially critical in defense and surveillance domains, but also in many other scenarios, in which a rapid response is mandatory to save human lives. Dealing with such a high dimensionality of data requires the conception of new algorithms to ease the demanding computing performance. Push-broom scanning represents the mainstream in hyperspectral imaging, introducing added complexity to the equation as there is no information of future pixels. In this paper, a novel technique named line-by-line anomaly detection (LbL-AD) algorithm, is presented as a way of performing real-time processing with a push-broom sensor. The sensor has been mounted on an unmanned aerial vehicle, and the acquired images, together with others from the scientific literature and synthetic ones, have been used to extensively validate the proposed algorithm in terms of accuracy, based on different metrics and processing time. Comparisons with state-of-the-art algorithms were accomplished in order to evaluate the goodness of the LbL-AD, giving as a result an outstanding performance.
URI: http://hdl.handle.net/10553/57515
ISSN: 1939-1404
DOI: 10.1109/JSTARS.2019.2919911
Fuente: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [ISSN 1939-1404], v. 12(12), p. 4787-4797.
Colección:Artículos
miniatura
Adobe PDF (1,92 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

20
actualizado el 15-dic-2024

Visitas

146
actualizado el 13-jul-2024

Descargas

384
actualizado el 13-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.