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A Novel Hyperspectral Anomaly Detection
Algorithm for Real Time Applications with
Push-broom Sensors

Pablo Horstrand, Maria Diaz, Radl Guerra, Sebastidn Lopez, Member, IEEE, and José Fco. Lopez

Abstract—Most practical hyperspectral anomaly detection
(AD) applications require real-time processing for detecting
complex targets from their background. This is especially critical
in defense and surveillance domains, but also in many other
scenarios in which a rapid response is mandatory to save human
lives. Dealing with such a high dimensionality of data requires the
conception of new algorithms to ease the demanding computing
performance. Push-broom scanning represents the mainstream
in hyperspectral imaging, introducing added complexity to the
equation as there is no information of future pixels. In this
paper a novel technique named Line-by-line Anomaly Detection
(LbL-AD) algorithm, is presented as a way of performing real-
time processing with a push-broom sensor. The sensor has been
mounted on an unmanned aerial vehicle (UAV), and the acquired
images, together with others from the scientific literature and syn-
thetic ones, have been used to extensively validate the proposed
algorithm in terms of accuracy, based on different metrics, and
processing time. Comparisons with state-of-the-art algorithms
were accomplished in order to evaluate the goodness of the LbL-
AD, giving as a result an outstanding performance.

Index Terms—anomaly detection; unmanned aerial vehicle;
push-broom sensor; hyperspectral imagery; onboard processing

I. INTRODUCTION

HE use of unmanned aerial vehicles (UAVs) equipped

with multi/hyperspectral sensors has gained momentum
in the last few years as a smart strategy for collecting data
for inspection, surveillance and monitoring in the areas of
defense, security, environmental protection and civil domains,
among others. The advantages of these aerial platforms over
Earth Observation satellites or manned airborne platforms is
that they represent a lower-cost approach with a more flexible
revisit time, while providing better spatial and sometimes even
better spectral imagery resolutions, which permits a deeper and
a more accurate data analysis [1].

There are several applications that benefit from these aerial
platforms. For instance in the agriculture domain, the utiliza-
tion of UAVs for the acquisition of remotely sensed data has
experienced an exponential growth [2], due to their capacity
of periodically monitoring the state of the crops, their growth,
ground water content and other valuable information for the
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farmers, potentially increasing productivity and decreasing
the costs. This application shares a common pattern with
many others that also make use of UAV platforms with
multi/hyperspectral sensors: images are first captured, then
data are downloaded after the flight is completed, and finally
data are processed offline to provide a result hours or even
days later.

Nevertheless, there exist other applications in which a
prompt response is mandatory. This is the case of the ap-
plication motivating this work, which is a particular use case
within the European H2020 project ENABLE-S3 (European
Initiative to Enable Validation for Highly Automated Safe
and Secure Systems). The goal for this particular scenario
is the automated driving of a harvester in an agricultural
field performing the cropping, watering or pesticide spraying
tasks. Initially, a drone equipped with a hyperspectral camera
inspects the terrain in order to generate a set of maps with
different vegetation indices which gives information related
to the status of the crop. This information, together with
the specific coordinates, is then sent to the harvester, which
initiates its autonomous driving to the region of interest and
starts its labour. In relation with this driving activity, much
has been reported related to fatal accidents due to agricultural
mowing operations which injure or kill animals. Additionally,
any collision with a big obstacle (animal or rock) means a
repairing cost which in some cases could be prohibitive. In
order to avoid these situations and promote a wildlife friendly
agro operation, a scheme similar to the one shown in Figure
1 is depicted. The drone flies at an altitude, h, and some
meters ahead of the harvester (security distance), which
depends on the harvester speed. If the hyperspectral camera
detects an obstacle, a stop&go signal is sent to the harvester,
and depending on the characteristic of the obstacle (dynamic
or static) the harvester will stop till the dynamic obstacle
disappears, or start an avoidance maneuver if it is static.

The presented scenario entails some major challenges that
are not overlooked by the authors and need to be further de-
tailed. For instance, it is well known that the current autonomy
of commercial UAV solutions powered by batteries is in the
order of tens of minutes making the whole operation too dis-
continuous and therefore unattractive for potential users. There
are nonetheless works in the scientific literature proposing
different solutions for such problem. On one hand, a wireless
power charge approach in order to reduce the stopping time
[3]. On the other hand the use of alternative propulsion systems
(or hybrid combinations of some of them), which alleviate the



restrictions imposed by electric batteries in terms of autonomy,
are attracting great attention from the scientific community
[4][51[6]. Another important aspect to take into account when
it comes to UAVs, being an autonomous vehicle, is the safety
critical operation it implies. Regulations are rather strict and
sometimes even present an additional economical burden.
However, as we see in other domains such as fire monitoring
[7], construction hazards [8], or even photogrammetry under
extreme weather conditions [9], the safety operation can be
kept and at the same time profit the advantages of the use of
such system

There are different strategies that have been evaluated to
sort the problematic raised by the ENABLE-S3 Farming Use
Case presented before, mainly based on thermal sensors [10]
and LIDARs. When implementing such autonomous vehicle
technologies, being at stake animals and human being lives,
safety and security becomes a critical issue and therefore, the
right approach is the combination of different technologies.
Thermal approach may fail in warm environments where living
beings are not so well distinguish anymore, and of course as
well detecting inert objects. On the other hand, LIDARSs, might
be alternatively installed in the harvesting vehicle or in the
supervisory drone. When mounted on the harvester, an uneven
terrain profile or the height of the crop can produce false
positives, while mounting it on the drone has the drawback
of additional weight and power consumption, reducing the
whole system autonomy. In this sense, great effort has been
carried out by the scientific community to reduce the sensor
weight [11][12]. For the mentioned reasons, a new approach,
is proposed in this work, consisting in using hyperspectral
images (HSIs) that could complement the results obtained
by the mentioned technologies. Since we are dealing with
a homogeneous field with small objects coming up in the
scene from time to time, anomaly detection (AD) has been
selected as an alternative approach to tackle the problem. Such
technique applied to hyperspectral data allows distinguishing
rare objects with unknown spectral signatures that are not par-
ticularly abundant in a scene. This possibility of distinguishing
a scarce group of pixels whose spectral signature significantly
differs from their surroundings represents a crucial feature and
has inspired the appearance of a huge amount of hyperspectral
AD algorithms in the recent scientific literature.

The Reed-Xiaoli (RX) algorithm [13] is one of the first
developments in this field, being viewed as a benchmark
to which other methods are compared. The RX anomaly
detector is based on the Mahalanobis distance between the
pixel under test and the background class. It assumes that
the background follows a single Gaussian normal distribution
and the probability density function is used to classify pixels
as part of the background class. Thus, the background mean
and the inverse covariance matrix must be well estimated;
otherwise, they could be contaminated by anomalies causing
a subsequent misclassification. Several variations of the RX
detection technique have been proposed in the literature in
order to improve its performance. Subspace RX (SSRX) [14]
and RX after orthogonal subspace projection (OSPRX) [15]
are global anomaly detectors that apply principal component
analysis (PCA) or singular value decomposition (SVD) to the

datacube. The goal is to reduce the data volume to a smaller
subspace where the first PCA/SVD bands are supposed to
represent the background class. SSRX discards these bands,
and then, RX is applied to the remaining subspace. On
the contrary, OSPRX projects the data onto the orthogonal
subspace before applying RX.

In the recent years, new approaches to the problem
have emerged, in order to cope, for instance, with inad-
equate Gaussian-distributed representations for nonhomoge-
neous backgrounds [16], the presence of noise in the images,
by using a combined similarity criterion anomaly detector
(CSCAD) method [17], as well as the removal of outliers by
using a collaborative representation detector (CRD) [18][19].
Other authors have explored techniques extensively used in
other machine vision domains as it is the use of dictionaries,
to separate the anomalies from the background [20], and even
combined the anomaly detection process with another very
common processing stage in HSI such as compression [21].

(a)

Fig. 1: Automated harvesting process, with the UAV a few
meters in front of the harvester scanning the field ahead for
obstacle detection.

Unfortunately, all these algorithms require the sensing of the
whole hyperspectral image before starting with the process of
finding the anomalies in the captured scene. However, the most
widely used sensors in nowadays remote sensing applications
are based on push-broom hyperspectral scanners, in which the
image is captured in a line-by-line fashion, since they provide
an outstanding spectral resolution and take advantage of the
movement of the UAV, aircraft or satellite that carries them for
capturing the whole hypercube. Hence, for applications under
strict real-time constraints in which the captured images must
be processed in a short period of time, it is more efficient
if the anomalies are uncovered as soon as the hyperspectral



data are sensed. Moreover, this kind of on-the-fly anomaly
detection drastically reduces the vast amount of memory that
is required on-board the sensing platform in order to store the
entire hypercubes.

In this scenario, this paper proposes a novel hyperspectral
anomaly detection algorithm specially conceived for being
able to process the lines of pixels captured by a push-broom
scanner as soon as they are sensed. More concretely, the
proposed Line-by-Line Anomaly Detection (LbL-AD) algo-
rithm is based, similar to the OSPRX algorithm, on the
concept of orthogonal subspace projections but employing a
low computational processing chain that guarantees a precise
detection of the anomalies present in a hyperspectral scene.

For the purpose of testing the performance of the algorithm
presented in this paper, synthetic images as well as real images
captured both by commercial aerial platforms and by our own
UAV platform based on a Specim FX10 VNIR hyperspectral
push-broom sensor [22] mounted on a DJI Matrice 600 drone
[23], have been used.

The rest of the paper is organized as follows. Section II de-
scribes, step by step, the proposed LbL-AD algorithm. Section
IIT presents the hyperspectral data and the assessment metrics
utilized for comparing the performance given by the LbL-
AD algorithm versus other state-of-the-art proposals. Section
IV outlines the main results obtained in terms of detection
performance and execution performance. Finally, Section V
draws the most representative conclusions achieved in this
work as well as further research directions.

II. THE LBL-AD ALGORITHM

As it has been already mentioned, the LbL-AD algorithm
is an anomaly detection algorithm suitable for real-time appli-
cations using push-broom hyperspectral sensors whose main
advantage is its fast computation combined with a good
detection performance, being able to process each line of
pixels as soon as they are sensed. This implies a reduction
in the required memory resources since it is not necessary to
store the full hypercube prior to its processing.

In order to keep a low computational complexity of the
anomaly detection process, the proposed LbL-AD algorithm
follows a twofold strategy: it starts processing as a whole
bunch the first n lines captured and then it follows a pro-
gressive line-by-line processing for the rest of the lines of
the image in which only a reduced amount of operations are
performed in order to update the results for the new acquired
line of pixels.

In particular, the following procedure is carried out for the
first n lines captured by the sensor:

1) A reference average pixel is computed considering all the
pixels contained in these lines.

2) The previously obtained average value is subtracted to
each sensed pixel.

3) The covariance matrix corresponding to these pixels is
calculated. At this point, it is worth to highlight that this
covariance matrix is not divided by the total number of
pixels, since in this way this matrix can be reutilized in
the next iterations (next lines of pixels), adding to it the

new covariance matrix of the acquired line. For this to
work, the number of pixels so far processed needs to be
accounted as well.

4) Principal component analysis is performed then onto the
covariance matrix to find the d highest eigenvalues and
their associated eigenvectors. Here, in order to keep the
LbL-AD algorithm within a low computational burden,
the following computing strategy is applied:

a) First, the highest eigenvalue and its associated eigen-
vector are obtained by means of the power iteration
method [24].

b) Afterwards, deflation [25] is performed onto the co-
variance matrix to calculate the next d — 1 eigenvalues
and eigenvectors, by means of successively applying
the power iteration method. This process is repeated
until the d desired number of components is obtained.

The reason for having selected this combination of meth-
ods is dual: on one hand, it is a very fast method for
just obtaining a few principal components, and on the
other hand, if the algorithm is wisely initialized, the
computation time can be significantly reduced. This last
characteristic is exploited by the proposed LbL-AD algo-
rithm, as for each iteration (each new line of pixels that
is acquired after the first n lines) the subspace calculated
from the previously sensed pixels is used for initializing
the algorithm, which brings a significant speedup factor
to the process.

5) The pixels are projected onto the subspace spanned by
the d eigenvectors obtained in the previous step.

6) The Mahalanobis distance is calculated for each pixel, as
it is done in the original RX algorithm. This step involves
the calculation of the pseudoinverse of the covariance
matrix. However, as far as the covariance matrix in the
new projected subspace is a diagonal matrix, its inverse is
obtained by just inverting its single elements individually,
which is again a huge save in terms of computing time.

7) Based on the calculated distance result, it is decided
whether each pixel is an anomaly or not. Thanks to the
good separability between background and anomalies of
the result provided by the algorithm, this task is carried
out applying a simple technique of outlier detection.

8) The background pixels Mahalanobis distance mean value
and standard deviation are computed for later use in the
process.

Once these n lines of pixels have been processed the
following line-by-line procedure is carried out for the rest of
the pixels in the hyperspectral scene under analysis:

A. The average pixel obtained previously in step 1 is sub-
tracted to each pixel of the line under processing.

B. The covariance matrix of the line under processing is
calculated and added to the existing covariance matrix
calculated previously in step 3. As with step A, this is
performed under the assumption that the average pixel
obtained in step 1 remains approximately constant, which
allows to skip the full computation of a new covariance
matrix for each new line of pixels. Moreover, this method
allows us to keep in memory just the previous covariance



matrix, but not the entire amount of pixels processed,
which means a huge save in memory space and number
of memory transactions.

C. Steps 4 to 7 are applied to the line of pixels under
processing.

D. If in step 7, anomalies were detected, then the recently
calculated covariance matrix is discarded, and the previ-
ous covariance matrix available recovered for processing
the next line. The reason for doing this is to keep as
much as possible the covariance matrix modeling only
the background, so whenever an anomaly is coming into
the scene it will be something new. This confides the
result an homogeneity that otherwise it would not have.

E. Finally, previous step 8 is applied, exclusively to the
background pixels.

Figure 2 shows a general vision of the stages involved in
the described algorithm. The following subsections will detail
the different parts of the proposed algorithm.
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Fig. 2: General overview of the LbL-AD algorithm.

A. Computation of first n lines

The first n lines are buffered into a matrix, M, which
afterwards is used to calculate the average pixel, u, to be
substracted to every processed image line. The covariance
matrix, Y, results from the obtained normalized matrix M’,
for which the eigenvectors, u, ..., uy, and the eigenvalues,
S1,...,8q, are calculated. After that, the new subspace is
calculated as explained in the next subsection. Algorithm 1

shows the pseudocode of the algorithm initialization, where r
stands for each captured line of n. pixels.

Algorithm 1: Computation of first n lines

Inputs: M = [ry,ro, ..., 1] where r; = [s;1,S;2, ..., Sinc);
{Initial portion of the HSI}
d, {Number of principal components to be selected}
N = n x n., {Number pixels contained in the first n
lines}
p1 p = mean(M); {Average pixel}

p2 for 1 =1 to n do
P3 for 7 =1 to nc do
pa || sy =si -
P5 end
r6 end
P7 X = MTM;
>
ps M’ = N;
P9 [Psi,S] = PCAM’,d);
Outputs:

Y., {Covariance matrix }

S, {Eigenvalues}

PSI, {Eigenvectors}

n, {Number of processed pixels}
u, {Average pixel}

B. Subspace calculation. Power Iteration method and defla-
tion.

On the first run the subspace is calculated for the computed
covariance matrix, Y, from the buffered n lines and then it
is updated on each iteration after the covariance matrix has
been updated. Since in the first iteration there are no previous
eigenvectors for feeding the algorithm, the input eigenvectors,
PSI,;,, are initialized with random values. However, on the
subsequent iterations the set of eigenvectors defining the
previous subspace are introduced as inputs of the algorithm
and used to initialize the calculation, considering that there
shall not be a big difference between the set of eigenvectors
computed from two consecutive iterations. The other two
inputs to the algorithm are the number of eigenvalues and
eigenvectors to be calculated, d, and a stop condition for the
convergence of the power iteration method, tol. An auxiliary
matrix, B, is used to deflate the original covariance matrix and
keep calculating subsequent eigenvalues and eigenvectors. The
deflation process mainly consists in obtaining a new matrix
that provides the same result than the original one in the
orthogonal direction to it and it is zero otherwise. A detailed
description of the subspace calculation process is presented in
Algorithm 2.

The subspace algorithm makes a recurrent call to the
Power Method function, whose behavior is described in
Algorithm 3, until all d eigenvalues and eigenvectors have
been obtained. As explained earlier, the initialization with the
previous obtained eigenvector is used to speed up convergence,
which combined with the use of the Rayleigh coefficient,
rayl, has proven to be very efficient [26]. This coefficient is



Algorithm 2: Subspace calculation

Inputs: X, {Covariance matrix}

PSL;,,, {Input Eigenvectors }

d, {number of eigenvalues to be calculated}

tol, {stop condition for the power iteration method}

p1 [PSI1, 5] = power method(X, tol, PSI_iny);
P2 i=2;
p3 B = X; {Support matrix to compute deflation}
r4 while i <=d do
ps | B=B—PSI_ PSI, ;;
P.6 [PSI;, S;] = powermethod(%, tol, PSI_in;);
P7 i=i+1;
rs end

Outputs:

S, {Eigenvalues}
PSI, {Eigenvectors }

calculated using the eigenvector approximation and represents
in its turn a very good approximation of the eigenvalue. The
method consists in iteratively calculating the new coefficient,
rayl, with the recently obtained vector and comparing it with
the value calculated in the previous iteration, rayly, until the
difference between them is lower than the input tolerance, tol.

Algorithm 3: Power Method

Inputs: ¥, {Covariance matrix}

by, {Input Eigenvector}

tol, {stop condition}

rayl, = 0;

bl Sby .

bTby

while abs(rayly — rayl) > tol do
rayl, = rayl;

P1

p2 rayl =

P3
P4

b, .
Ps5 brt1 = rspe

b. by, .

P6 ;
bT by,

rayl =

end

Outputs:

rayl, {Calculated Eigenvalue}
by, {Calculated Eigenvector}

P.7

C. Image Projection and Distance Calculation

After the first n lines have been processed, the proposed
algorithm processes the sensed data line by line, as it is
described in Algorithm 4. As it has been already mentioned,
the average pixel, u, obtained in the first stage of the algorithm,
is substracted from each pixel, and then, the covariance matrix
is updated to obtain X,.,, and the new set of d eigenvalues
and eigenvectors from the updtaed X,,.,. The process then
continues projecting the image onto the new subspace and
obtaining the Mahalanobis distance for each pixel. Finally,
the mean value, 4;s¢, and the standard deviation, og;s, of
the Mahalanobis distance of just the background pixels are
calculated and updated on every iteration, in order to account
for possible outliers, and thus, anomalies. In case anomalies

are found, the covariance matrix of the previous iteration is
used, instead of the updated one as long as it is not the first
iteration. As it can be seen in the pseudocode, a very large
value, for instance 15 times the standard deviation is used
to be very conservative and avoid covariance update in case
anomalies are found. The reason for updating the covariance
matrix selectively is to obtain a more homogeneous result in
terms of the anomalies.

Algorithm 4: Image Projection and RX

Inputs: r; = [Sg1,Sk2, -, Skne] Where k& > n; {captured
frame of nc pixels}
3._in, {Covariance matrix of the already processed
image}
w, {Average pixel}
Ldist_ins Odist_in, {Background distance mean and
standard deviation}
Binask_in = [b1, b2, ...,bi_1], {Binary result of
processed pixels so far}
L =k x n., {Number of pixels processed so far, line k
included }
for j =1 to nc do
| Sk =Sk —
end
E=M"M+ Z_in;
[PSI, S] = Algorithm_2(Z,PSI, d, tol);
Y = PSIT x M; {Projected Image to the new calculated
subspace}
P = RX(s) = s7S7!s
update = 1
for j =1 to nc do
ifp; > Wdist_in + Odist_in * 15 then
bn+j =1
update = 0;
else
‘ byt =0;
end

P1

P2
P3

P5
P.6
P.7

P8

P9
P.10
P11
P12
P13
P.14
P.15
P.16
P.17

end

Dol pixby
Kdist = = lL —

_ \/Z?:Cl(Pi*Mdisf,)Q*bi.
Odist = 71 ;

Outputs:
P {Vector of Mahalanobis distances}
B,..sk {Binary result of processed pixels}
PSI, {Eigenvectors}
Ldist, Odist, {Bck distance mean and std deviation}
if update then
| X, {Covariance matrix};
else
‘ 3_in, {Input covariance matrix};
end

P18

P19

III. DATA AND EVALUATION METRICS
A. Reference Hyperspectral Data

In this paper, both simulated and real HSIs have been used
to evaluate the performance and effectiveness of the proposed



method. The simulated data have a size of 150x150 pixels
and 429 spectral bands. It was generated using a spectral
library collected from the United States Geological Survey
(USGS) [27]. Background was simulated using four different
spectral signatures whose abundances were generated using a
Gaussian spherical distribution [28]. Twenty panels of different
sizes arranged in a 5x4 matrix were introduced as anomalies.
There are five 4x4 pure-pixel panels lined up in five rows in
the first column, five 2x2 mixed-pixel panels in the second
column, five subpixel panels combined with the background
in a proportion of 50% in the third column and five subpixel
panels blended with the background at 75%. Therefore, the
simulated image has 110 anomaly pixels, a 0.49% of the
image, as it is illustrated in Figure 3a. This data set is very
challenging for AD because of the high spectral similarities
between some anomalous and background signatures.

In order to test the proposed algorithm in a more realistic
scenario, four real hyperspectral data sets have been also used:
three well known data sets available in the literature, and
a data set captured by an UAV available at our lab. The
first real data set was taken over the Rochester Institute of
Technology (RIT) by the Wildfire Airborne Sensor Program
(WASP) Imaging System [29]. The system covers the visible,
short, mid and long-wave infrared regions of the spectrum.
The sensor was comprised by a high-resolution colour camera
covering the visible spectrum, a short infrared imager covering
0.9 - 1.5 pm, mid infrared imager covering 3.0 - 5.0 um and
a long infrared imager covering 8.0 - 9.2 um. A portion of the
overall image taken over a parking lot with a size of 180 x
180 pixels and 120 bands has been used in this study, as can
be seen in Figure 3b where anomalies are fabric targets which
consist of 72 pixels and account for 0.22% of the image. The
second real data set was collected by the NASA Jet Propulsion
Laboratory's Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) over the World Trade Centre (WTC) area in New
York City on September 16, 2001 [30]. The original data
set has a size of 614 x 512 pixels and 224 spectral bands
from 0.4 to 2.5 pum although a smaller region with size of
200 x 200 pixels was selected as data set. Anomalies are
thermal hot spots which consist of 83 pixels and account for
0.21% of the image scene. Figure 3c shows a representation
of this image. The third real data set is a portion of 67 x 80
pixels cropped from the well—known Washington DC Mall
hyperspectral data set, obtained through Purdue University’s
MultiSpec freeware project. This data set was acquired by the
airborne mounted Hyperspectral Digital Imagery Collection
Experiment (HYDICE) which measures pixel response in the
0.4 to 2.4 pum region of the visible and infrared spectrum.
Bands in the 0.9 and 1.4 pm region where the atmosphere is
opaque have been omitted from the data set, leaving 191 bands.
Figure 3d shows a RGB representation of the area chosen for
this analysis, which mainly consists of trees and a river and
where the anomalous pixels belong to a building placed among
the trees. The number of anomalous pixels is 15, 0.28 % of
the image scene.

Finally, the last real HSI was captured by one of our
hyperspectral sensors mounted on an UAV. In particular, the
sensor is the Specim hyperspectral FX10 which operates in

the visible and near infrared range (VNIR), i.e. between 0.4-
1.0 pm. It is a push-broom camera which provides 1024 spatial
pixels and 224 spectral bands [22]. However, due to the low-
signal-to-noise ratio (SNR) of the first and last spectral bands,
they were removed (1-10, 191-224), so that, 180 bands have
been retained. The original image scene covers an area of
1024x4967 pixels but a much shorter scene has been cropped
containing the anomalies of the scene. Hence, the final size
of the image utilized in this work is 250x250 pixels as shown
in Figure 3e. Finally, it should be mentioned that the anomaly
target is a human being and that, in the whole scene, anomalies
consist of 121 pixels, 0.19% of the total image while the
background represented in the scene consists of a few rows of
wine crop and the soil in between.

B. Reference Algorithms

The LbL-AD algorithm has been compared against the
most relevant algorithms of the state-of-the-art in the field
of hyper-spectral AD, both computing the image as a whole
and in a line-by-line fashion as the LbL-AD algorithm does.
The intention is to test the quality of the detection results
and the separability between anomalies and background, as
well as the complexity and required computational effort.
The selected algorithms are the Reed-Xiaoli after orthogonal
subspace projection (OSPRX), which computes the anomalies
once the entire image is captured, and the progressive line
processing of kernel Reed-Xiaoli anomaly detection algorithm
for hyperspectral imagery PLP-KRXD [31], which follows a
line-by-line fashion.

C. Assessment Metrics

Receiver Operating Characteristic (ROC) curves and the
area under these curves (AUC) have been widely used in the
literature to evaluate different anomaly detection algorithms.
ROC curves are two dimensional graphical plots which illus-
trate the relation between true positive rates (TPR) and false
positive rates (FPR) obtained for various threshold settings.
To compare the performance of several AD algorithms, AUC
is used as a scalar measure, so that, a representation with
the biggest AUC outperforms the others. However, this metric
does not always reflect how well the algorithm separates the
anomalies from the background. For this reason, two extra
quality metrics will be employed in this work: Brier Score
(BS) and Squared Error Ratio (SER)[32].

BS measures the accuracy of probability predictions in
terms of marking anomalies and background pixels with the
highest and the lowest scores, respectively. If anomaly pixels
are represented as ones and background pixels as zeros in the
ground-truth, then, the BS for each type of pixel is calculated
as:

Bsanomaly = (pz - 1)27 (1)

Bsbackground = (pz - 0)2; (2)

being p;, the output of the algorithm, spanned in the range
0—1].
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Fig. 3: Test data sets. (a) Synthetic image. (b) WASP RIT scene. (c) AVIRIS WTC scene. (d) HYDICE WDC scene. (e) UAV

scene.

Adding the BS,nomaly Of all individual pixels in the image
provides an insight into the error made scoring anomalous
pixels, the same way that adding BSy,,ckgrouna of all individual
pixels in the image gives an insight into the background
misclassification error. These error scores are represented by
the Anomaly_FError and Bck_FError metrics defined below.

Manomaly(GT)

Anomaly_Error = Z (p; —1)? 3)
i=1
Mbck(GT)
Bck_Error = Z (pj—O)2 4)
j=1
Finally, a global scalar metric combining the

Anomaly_FError and the Bck_Error, named Squared Error
Ratio (SER), is obtained dividing the sum of all squared
differences by the total number of pixels in the image.

MNanomaly(GT) Mbck(GT)

(- 17+ 3 (b~ 07

N,

p

i=1

SER =

-100 (5)

with the first addend in the summation being the
Anomaly_Error and the second addend the Bck_Error.

IV. EXPERIMENTAL RESULTS
A. Analysis of input parameters

There are a few input parameters to the algorithm such as
n, d and tol, which were selected based on the experience
acquired during the development of the proposed algorithm.
These parameters have been adjusted after a deep analysis of
the algorithm behaviour in order to ensure a good performance
in all analysed scenarios. To verify that they are adequate
settings, experiments have been made changing the values of
each parameter in a certain range while keeping the others
constant in order to evaluate the performance of the algorithm.

As it was previously described, n is the number of captured
lines that have to be accumulated in memory to calculate its
average value and use it as a reference throughout the whole
process. These lines are then, after captured, processed as a
whole bunch and the result is provided to the user. From then
on, lines are processed as they are being captured. Therefore
this parameter has been set trying to achieve a good trade-off
between having a representative average value, but also small

enough so the user does not have to wait a significant amount
of time in order to get the detection results.

For the purpose of the analysis of this parameter, a real
HSI has been selected, namely the image captured with the
Specim FX10 sensor mounted on the UAV. This parameter
has been progressively increased from 1 line up to 30 lines,
and the average pixel vector has been represented in Figure
4. From this figure, it is noticed that the average shows a
very regular pattern independent of the value of n, being the
curve smoother with the increase in the number of samples
considered to compute the average. Due to this reason, a value
of 10 lines has been selected, as a trade-off between enough
smoothness in the curve together with a fast response to the
user.

The number of representative principal components d is a
rather critical parameter that has to be carefully selected. In
this case simulations show an absolute maximum value of
5 as a good choice in terms of information being retained
and computation time. In addition, it has been imposed that
the decay between two consecutive eigenvalues is not higher
than 1075, otherwise the number of elements until that decay
are taken. The main reason for such restriction is that if
components with a very low value are taken the algorithm
is not robust enough.

Finally for the stop condition in Algorithm 3, again a trade-
off between computation time and goodness of the results has
been taken into consideration. Making the tolerance for the
power iteration algorithm too small has the disadvantage of
having to call the function several extra times to refine the
result, which does not produce an improvement in terms of
the algorithm result. For this reason, a value of 10~ has been
selected.

B. Detection Performance

In order to test the performance of the proposed algorithm,
its detection efficiency has been compared with the state-
of-the-art anomaly detection algoritms presented in Section
III. Due to the fact that the performance of the PLP-KRXD
algorithm depends on a few input factors such as window
length [, window width w and kernel order d, the values
providing the best results for each image scene has been found
out and detailed in Table I.

The results obtained in terms of the metrics described in
Section III-C are summarized in Table II for each of the



0.35
1 lines
.......... 2 lines
0.3 + 5 lines
.......... 10 lines
20 lines
0.25 [ [ sevreeeens 30 lines
=
2 02t
9]
o
c
5]
© 015
Q
°
0.1
0.05
0 ‘ " : ‘ ‘ ‘
0.4 05 0.6 0.7 0.8 0.9 1

wavelength[ pm]

Fig. 4: Image average pixel. Analysis based on the used lines
in the buffer

TABLE I: PLP-KRXD parameter table

Il Jw|d

Synthetic Image | 15 | 5 | 1
WASP RIT 15|55
AVIRIS WTC | 15| 7 |1
HYDICE WDC | 15| 7 | 2
UAV 1816 |1

already mentioned images. From these results, it is concluded
that the proposed LbL-AD algorithm is able to provide very
similar results with respect to the OSPRX algorithm and even
outperforms it in some cases, as it is in the case of the
HYDICE WDC image, with the major advantage of being able
to compute the anomalies present in the image as soon as the
line of pixels is sensed. In addition, it is also concluded from
Table II that if we focus our attention only on the solution
that allows to process the hyperspectral images in a line-by-
line fashion, our proposal delivers a much better detection
performance than the one provided by the PLP-KRXD.

Finally, Figure 5 illustrates the two-dimensional plots of the
detection results given by the proposed LbL-AD algorithm
and the OSPRX algorithm for all the considered data sets
together with the ground truth. It is visually demonstrated
that our proposal is able to capture in a very precise way
all the anomalies present in a given hyperspectral image
independently of the characteristics of the background and
of the anomalies present in the scene under analysis, and
also showing that the visual result provided by the LbL-AD
algorithm is very similar to the one provided by the OSPRX
as it was already demonstrated with the results displayed in
Table II.

C. Execution Performance

In the previous subsection, the detection performance com-
parison of the LbL-AD algorithm versus the state-of-the-art

TABLE II: Assessment Metric Summary

AUC | Anomaly_Error | Bck_Error | SER
Synthetic Image
OSPRX 1.00 48.70 0.15 0.21
LbL-AD 1.00 77.84 0.01 0.34
PLP-KRXD | 0.95 92.80 0.63 0.41
WASP RIT
OSPRX 0.99 40.93 1.15 0.12
LbL-AD 0.99 43.98 2.05 0.14
PLP-KRXD | 0.77 71.80 10.32 0.25
AVIRIS WTC
OSPRX 0.97 72.93 0.76 0.18
LbL-AD 0.96 74.63 1.32 0.18
PLP-KRXD | 0.51 82.97 5.87 0.22
HYDICE WDC
OSPRX 0.99 7.42 0.27 0.14
LbL-AD 0.99 5.69 0.48 0.11
PLP-KRXD | 0.97 8.91 0.21 0.17
UAV

OSPRX 0.99 130.30 7.75 0.40
LbL-AD 0.99 163.48 4.46 0.49
PLP-KRXD | 0.79 322.86 4.76 0.96

has revealed that the results obtained by our proposal are
much better than the ones provided by the line-by-line PLP-
KRXD algorithm and equivalent to those provided by the
OSPRX algorithm. The main advantage of the proposed LbL-
AD algorithm with respect to the OSPRX algorithm is its
capability of processing the lines of pixels as they are being
sensed, while the OSPRX needs to wait until the complete
image has been captured to produce a result. In order to
emphasize this aspect, a comparison between the time required
for the UAV image to be processed and have the results ready
for both algorithms is shown in Figure 6.

As it can be seen, in case the image is processed with the
OSPRX, no matter where the anomaly is located, information
will be available after 1.77 seconds. If the image is processed
with the proposed LbL-AD algorithm, depending on where the
anomaly is present at the image, a result will be available for
the system. For instance if the anomaly is located at a 40% of
the image, that is in this case at line 100, the result is available
after approximately 0.7 seconds, which is more than a second
earlier than with the other method.

The test has been performed by setting the parameter n to
10, the total number of lines, IV, to 250 and the sampling rate



OSPRX

LbL-AD

Ground-truth

Fig. 5: Two-dimensional plots of the detection results obtained by the AD algorithms considered in this work (rows) for all
data sets (columns). To make the results easier to understand, the ground-truths of the anomalous maps are shown in the last
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Fig. 6: Execution time comparison in terms of availability of
the result.

at which the image was captured to 150 lines per second. The
algorithms were executed on a PC with an Intel Core 17-6700
CPU and 16 GB of RAM memory running a Ubuntu 14.04
operating system.

V. CONCLUSIONS AND FURTHER RESEARCH

This work describes a novel anomaly detection technique
(LbL-AD, or Line-by-Line Anomaly Detection) for push-

broom hyperspectral sensors. The algorithm is premised on
the concept of orthogonal subspace projection, similar to other
ones encountered in the scientific literature, but after an initial
stage involving the first n scanned lines, it is combined with
a line-by-line processing chain. A detailed behavior of the
algorithm is described and experimental results are obtained
using quality metrics for different synthetic and real images
as for instance the one captured with our hyperspectral flying
platform, showing an excellent performance compared to
relevant state-of-the-art proposals such as OSPRX and PLP-
KRXD. From these results it is concluded that LbL-AD is
an attractive candidate for hyperspectral imaginary, opening a
new frontier in myriad of applications in which real-time and
low computational cost is mandatory.
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