Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/56286
Título: | Hybrid UCB-HMM: A machine learning strategy for cognitive radio in HF band | Autores/as: | Melian Gutierrez,Laura Beatriz Modi, Navikkumar Moy, Christophe Bader, Faouzi Pérez Álvarez, Iván Alejandro Zazo, Santiago |
Clasificación UNESCO: | 332506 Comunicaciones por satélite | Palabras clave: | Cognitive Radio HF Opportunistic Spectrum Access Upper Confidence Bound Hidden Markov Model |
Fecha de publicación: | 2015 | Publicación seriada: | IEEE Transactions on Cognitive Communications and Networking | Resumen: | Multiple users transmit in the HF band with worldwide coverage but collide with other HF users. New techniques based on cognitive radio principles are discussed to reduce the inefficient use of this band. In this paper, we show the feasibility of the Upper Confidence Bound (UCB) algorithm, based on reinforcement learning, for an opportunistic access to the HF band. The exploration vs. exploitation dilemma is evaluated in single-channel and multi-channel UCB algorithms in order to obtain their best performance in the HF environment. Furthermore, we propose a new hybrid system, which combines two types of machine learning techniques based on reinforcement learning and learning with Hidden Markov Models. This system can be understood as a metacognitive engine that automatically adapts its data transmission strategy according to HF environment's behaviour to efficiently use spectrum holes. The proposed hybrid UCB-HMM system increases the duration of data transmission's slots when conditions are favourable, and is also able to reduce the required signalling transmissions between transmitter and receiver to inform which channels have been selected for data transmission. This reduction can be as high as 61% with respect to the signalling required by multi-channel UCB. | URI: | http://hdl.handle.net/10553/56286 | ISSN: | 2332-7731 | DOI: | 10.1109/TCCN.2016.2527021 | Fuente: | IEEE Transactions on Cognitive Communications and Networking [ISSN 2332-7731], v. 1 (3), p. 347 - 358 |
Colección: | Actas de congresos |
Citas SCOPUSTM
20
actualizado el 17-nov-2024
Visitas
147
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.