Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/56286
Campo DC Valoridioma
dc.contributor.authorMelian Gutierrez,Laura Beatrizen_US
dc.contributor.authorModi, Navikkumaren_US
dc.contributor.authorMoy, Christopheen_US
dc.contributor.authorBader, Faouzien_US
dc.contributor.authorPérez Álvarez, Iván Alejandroen_US
dc.contributor.authorZazo, Santiagoen_US
dc.date.accessioned2019-08-01T08:35:29Z-
dc.date.available2019-08-01T08:35:29Z-
dc.date.issued2015en_US
dc.identifier.issn2332-7731en_US
dc.identifier.urihttp://hdl.handle.net/10553/56286-
dc.description.abstractMultiple users transmit in the HF band with worldwide coverage but collide with other HF users. New techniques based on cognitive radio principles are discussed to reduce the inefficient use of this band. In this paper, we show the feasibility of the Upper Confidence Bound (UCB) algorithm, based on reinforcement learning, for an opportunistic access to the HF band. The exploration vs. exploitation dilemma is evaluated in single-channel and multi-channel UCB algorithms in order to obtain their best performance in the HF environment. Furthermore, we propose a new hybrid system, which combines two types of machine learning techniques based on reinforcement learning and learning with Hidden Markov Models. This system can be understood as a metacognitive engine that automatically adapts its data transmission strategy according to HF environment's behaviour to efficiently use spectrum holes. The proposed hybrid UCB-HMM system increases the duration of data transmission's slots when conditions are favourable, and is also able to reduce the required signalling transmissions between transmitter and receiver to inform which channels have been selected for data transmission. This reduction can be as high as 61% with respect to the signalling required by multi-channel UCB.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Cognitive Communications and Networkingen_US
dc.sourceIEEE Transactions on Cognitive Communications and Networking [ISSN 2332-7731], v. 1 (3), p. 347 - 358en_US
dc.subject332506 Comunicaciones por satéliteen_US
dc.subject.otherCognitive Radioen_US
dc.subject.otherHFen_US
dc.subject.otherOpportunistic Spectrum Accessen_US
dc.subject.otherUpper Confidence Bounden_US
dc.subject.otherHidden Markov Modelen_US
dc.titleHybrid UCB-HMM: A machine learning strategy for cognitive radio in HF banden_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1109/TCCN.2016.2527021
dc.identifier.scopus85049358618
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid37051046300
dc.contributor.authorscopusid56970873800
dc.contributor.authorscopusid22954180600
dc.contributor.authorscopusid18036536600
dc.contributor.authorscopusid6603181795
dc.contributor.authorscopusid6701549562
dc.description.lastpage358-
dc.identifier.issue3-
dc.description.firstpage347-
dc.relation.volume1-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateSeptiembre 2015
dc.identifier.ulpgces
dc.description.esciESCI
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0001-5990-8409-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameMelian Gutierrez,Laura Beatriz-
crisitem.author.fullNamePérez Álvarez,Iván Alejandro-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

20
actualizado el 24-nov-2024

Visitas

147
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.