Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55761
Título: An efficient 3D color-texture feature and neural network technique for melanoma detection
Autores/as: Warsi, Firoz
Khanam, Ruqaiya
Kamya, Suraj
Suárez Araujo, Carmen Paz 
Clasificación UNESCO: 120304 Inteligencia artificial
32 Ciencias médicas
220990 Tratamiento digital. Imágenes
Palabras clave: Melanoma
Color texturefeature
Dermoscopic image
Neural network classifier and skin cancer
Fecha de publicación: 2019
Publicación seriada: Informatics in Medicine Unlocked 
Resumen: Malignant melanoma is the deadliest form of skin cancer, but can be more readily treated successfully if detected in its early stages. Due to the increasing incidence of melanoma, research in the field of autonomous melanoma detection has accelerated. In this paper, a new method for feature extraction from dermoscopic images, termed multi-direction 3D color-texture feature (CTF), is proposed, and detection is performed using a back propagation multilayer neural network (NN) classifier. The proposed method is tested on the PH 2 dataset (publicly available) in terms of accuracy, sensitivity, and specificity. The extracted combined CTF is fairly discriminative. When it is input and tested in a neural network classifier that is provided, encouraging results are obtained, i.e. accuracy = 97.5%, sensitivity = 98.1% and specificity = 93.84%. Comparative result analyses with other methods are also discussed, and the results are also improved over benchmarking results for the PH2 dataset.
URI: http://hdl.handle.net/10553/55761
ISSN: 2352-9148
DOI: 10.1016/j.imu.2019.100176
Fuente: Informatics in Medicine Unlocked [ISSN 2352-9148], v. 17 (2019), 100176
Colección:Artículos
miniatura
pdf
Adobe PDF (1,34 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.