Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55022
Título: Bayesian inference in auditing with partial prior information using maximum entropy priors
Autores/as: Martel-Escobar, María 
Vázquez-Polo, Francisco José 
Hernández-Bastida, Agustín
Clasificación UNESCO: 530204 Estadística económica
Palabras clave: Auditing
Bayesian inference
Dollar unit sampling
Modified likelihood
Partial prior information
Fecha de publicación: 2018
Publicación seriada: Entropy 
Resumen: Problems in statistical auditing are usually one–sided. In fact, the main interest for auditors is to determine the quantiles of the total amount of error, and then to compare these quantiles with a given materiality fixed by the auditor, so that the accounting statement can be accepted or rejected. Dollar unit sampling (DUS) is a useful procedure to collect sample information, whereby items are chosen with a probability proportional to book amounts and in which the relevant error amount distribution is the distribution of the taints weighted by the book value. The likelihood induced by DUS refers to a 201–variate parameter p but the prior information is in a subparameter θ linear function of p , representing the total amount of error. This means that partial prior information must be processed. In this paper, two main proposals are made: (1) to modify the likelihood, to make it compatible with prior information and thus obtain a Bayesian analysis for hypotheses to be tested; (2) to use a maximum entropy prior to incorporate limited auditor information. To achieve these goals, we obtain a modified likelihood function inspired by the induced likelihood described by Zehna (1966) and then adapt the Bayes’ theorem to this likelihood in order to derive a posterior distribution for θ . This approach shows that the DUS methodology can be justified as a natural method of processing partial prior information in auditing and that a Bayesian analysis can be performed even when prior information is only available for a subparameter of the model. Finally, some numerical examples are presented.
URI: http://hdl.handle.net/10553/55022
ISSN: 1099-4300
DOI: 10.3390/e20120919
Fuente: Entropy[ISSN 1099-4300],v. 20 (12), (Diciembre 2018)
Colección:Artículos
miniatura
pdf
Adobe PDF (376,96 kB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 15-dic-2024

Visitas

96
actualizado el 23-may-2024

Descargas

84
actualizado el 23-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.