Please use this identifier to cite or link to this item:
Title: Bayesian inference in auditing with partial prior information using maximum entropy priors
Authors: Martel-Escobar, María 
Vázquez-Polo, Francisco José 
Hernández-Bastida, Agustín
UNESCO Clasification: 530204 Estadística económica
Keywords: Auditing
Bayesian inference
Dollar unit sampling
Modified likelihood
Partial prior information
Issue Date: 2018
Journal: Entropy 
Abstract: Problems in statistical auditing are usually one–sided. In fact, the main interest for auditors is to determine the quantiles of the total amount of error, and then to compare these quantiles with a given materiality fixed by the auditor, so that the accounting statement can be accepted or rejected. Dollar unit sampling (DUS) is a useful procedure to collect sample information, whereby items are chosen with a probability proportional to book amounts and in which the relevant error amount distribution is the distribution of the taints weighted by the book value. The likelihood induced by DUS refers to a 201–variate parameter p but the prior information is in a subparameter θ linear function of p , representing the total amount of error. This means that partial prior information must be processed. In this paper, two main proposals are made: (1) to modify the likelihood, to make it compatible with prior information and thus obtain a Bayesian analysis for hypotheses to be tested; (2) to use a maximum entropy prior to incorporate limited auditor information. To achieve these goals, we obtain a modified likelihood function inspired by the induced likelihood described by Zehna (1966) and then adapt the Bayes’ theorem to this likelihood in order to derive a posterior distribution for θ . This approach shows that the DUS methodology can be justified as a natural method of processing partial prior information in auditing and that a Bayesian analysis can be performed even when prior information is only available for a subparameter of the model. Finally, some numerical examples are presented.
ISSN: 1099-4300
DOI: 10.3390/e20120919
Source: Entropy[ISSN 1099-4300],v. 20 (12), (Diciembre 2018)
Appears in Collections:Artículos
Adobe PDF (376,96 kB)
Show full item record


checked on Jun 9, 2024


checked on Jun 9, 2024

Page view(s)

checked on May 23, 2024


checked on May 23, 2024

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.