Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47445
Título: | Tensor field regularization using normalized convolution and Markov random fields in a Bayesian framework | Autores/as: | Westin, Carl Fredrik Martin-Fernandez, Marcos Alberola-Lopez, Carlos Ruiz-Alzola, Juan Knutsson, Hans |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Probability Density Function Fractional Anisotropy Minimum Mean Square Error Simulated Annealing Algorithm Minimum Mean Square Error Estimation |
Fecha de publicación: | 2006 | Publicación seriada: | Mathematics and Visualization | Resumen: | This chapter presents two techniques for regularization of tensor fields. We first present a nonlinear filtering technique based on normalized convolution, a general method for filtering missing and uncertain data. We describe how the signal certainty function can be constructed to depend on locally derived certainty information and further combined with a spatially dependent certainty field. This results in reduced mixing between regions of different signal characteristics, and increased robustness to outliers, compared to the standard approach of normalized convolution using only a spatial certainty field. We contrast this deterministic approach with a stochastic technique based on a multivariate Gaussian signal model in a Bayesian framework. This method uses a Markov random field approach with a 3D neighborhood system for modeling spatial interactions between the tensors locally. Experiments both on synthetic and real data are presented. The driving tensor application for this work throughout the chapter is the filtering of diffusion tensor MRI data. | URI: | http://hdl.handle.net/10553/47445 | ISSN: | 1612-3786 | DOI: | 10.1007/3-540-31272-2_24 | Fuente: | Mathematics and Visualization[ISSN 1612-3786], p. 381-398 |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
59
actualizado el 10-ago-2024
Descargas
31
actualizado el 10-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.