Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47445
Título: Tensor field regularization using normalized convolution and Markov random fields in a Bayesian framework
Autores/as: Westin, Carl Fredrik
Martin-Fernandez, Marcos
Alberola-Lopez, Carlos
Ruiz-Alzola, Juan 
Knutsson, Hans
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Probability Density Function
Fractional Anisotropy
Minimum Mean Square Error
Simulated Annealing Algorithm
Minimum Mean Square Error Estimation
Fecha de publicación: 2006
Publicación seriada: Mathematics and Visualization 
Resumen: This chapter presents two techniques for regularization of tensor fields. We first present a nonlinear filtering technique based on normalized convolution, a general method for filtering missing and uncertain data. We describe how the signal certainty function can be constructed to depend on locally derived certainty information and further combined with a spatially dependent certainty field. This results in reduced mixing between regions of different signal characteristics, and increased robustness to outliers, compared to the standard approach of normalized convolution using only a spatial certainty field. We contrast this deterministic approach with a stochastic technique based on a multivariate Gaussian signal model in a Bayesian framework. This method uses a Markov random field approach with a 3D neighborhood system for modeling spatial interactions between the tensors locally. Experiments both on synthetic and real data are presented. The driving tensor application for this work throughout the chapter is the filtering of diffusion tensor MRI data.
URI: http://hdl.handle.net/10553/47445
ISSN: 1612-3786
DOI: 10.1007/3-540-31272-2_24
Fuente: Mathematics and Visualization[ISSN 1612-3786], p. 381-398
Colección:Actas de congresos
miniatura
Adobe PDF (2,8 MB)
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

59
actualizado el 10-ago-2024

Descargas

31
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.