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Summary. This chapter presents two techniques for regularization of tensor fields.
We first present a nonlinear filtering technique based on normalized convolution,
a general method for filtering missing and uncertain data. We describe how the
signal certainty function can be constructed to depend on locally derived certainty
information and further combined with a spatially dependent certainty field. This
results in reduced mixing between regions of different signal characteristics, and in-
creased robustness to outliers, compared to the standard approach of normalized
convohition using only a spatial certainty field. We contrast this deterministic ap-
proach with a stochastic technique based on a multivariate Gaussian signal model
in a Bayesian framework. This method uses a Markov random field approach with
a 3D neighborhood system for modeling spatial interactions between the tensors lo-
cally. Experiments both on synthetic and real data are presented. The driving tensor
application for this work throughout the chapter is the filtering of diffusion tensor
MRI data.

24.1 Introduction

Using conventional MRI, we can easily identify the functional centers of the
brain (cortex and nuclei). However, with conventional anatomical MRI tech-
niques, the white matter of the brain appears to be homogeneous without any
suggestion of the complex arrangement of fiber tracts. Diffusion Tensor MRI
(DT-MRI) is a relatively recent imaging modality that measures the diffu-
sion of water in biological tissue. A common first order model of anisotropic
diffusion is the Gaussian model that gives ellipsoidal isoprobability surfaces
describing the diffusion. This then naturally leads to the tensor representation
through the analogy between symmetric 3 x 3 tensors to the ellipsoidal repre-
sentation. Within white matter, the mobility of the water is restricted by the
axons that are oriented along the fiber tracts. Hence, the demonstration of
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anisotropic diffusion in the brain by MRI has paved the way for non-invasive
exploration of the structural anatomy of the white matter in vivo {1, 12].
Alexander presents a good introduction to DT-MRI and the diffusion process
in Chap. 5.

The diffusion weighted MRI images are corrupted by noise. There are many
factors that contribute to the noise. One source is associated with the receiving
coil resistance, others come from inductive losses. The major source of noise
will depend on the strength of the static magnetic field and the volume sample
size. In addition, the final image noise can also depend on other factors like
the voxel size, the receiver bandwidth and the number of time averages in
the acquisition process [4]. Hahn et al. discuss the origin of the noise and its
impact in Chap. 6. By imposing smoothness or regularization constraints on
the tensor field the amount of noise can be reduced. In this chapter we will
present two different types of regularization approaches: one deterministic
and one stochastic. An overview of other recent regularization methods can
be found in [15].

24.2 Normalized Convolution

In this section we outline how normalized convolution (NC) can be used for
regularizing scalar, vector, and higher order tensor fields. The method pre-
sented here closely follows the description in [17].

NC was introduced as a general method for filtering missing and uncertain
data [7, 16]. This method can be viewed as locally solving a weighted least
squares (WLS) problem. A local description of a signal, f, can be defined using
a weighted sum of basis functions stored as columns, B. Minimizing'

IIW(B6 — f)]| (24.1)

with respect to the weights @, which are the coordinates of the signal in the
basis B, results in the WLS solution [5]

f, = B = B(B*WTWB) 'B*WTWf , (:

]
W
[ ]
S

where B* is the conjugate transpose of B.

In NC the weights W are split into two parts. One that belongs to the
basis functions and usually referred to as the applicability function a, a scalar
windowing function that deals with spatial localization of the operators in B,
This provides an alternative to traditional windowing with the advantage of
not changing the function values.

The second part belongs to the signal and is referred to as the signal
certainty function ¢ describing the credence of the signal samples. Missing

! The norm of a matrix A is the Frobenius norm given by ||A|] = /ir(ATA),
where {r{A) is the trace and A7 the transpose of A.
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samples are handled by setting this function to zero. Note that handling miss-
ing data in a more traditional way by for example setting the signal values to
zero would introduce artificial structures in the image. Further, the certainty
function is usually set to zero outside the signal border reducing the impact
of traditional edge effects.

The weight matrix W can be constructed by multiplyving two diagonal
matrices containing the applicability and the certainties in the diagonal re-
spectively, W, and W,. To keep in line with established notation [16] we
define WTW = W, W, which will avoid squaring the weights in the calcula-
tions. Inserting this into equation (24.2) gives

fo = B = B(B*W,W_.B) 'B*W,W.f . (24.3)

24.2.1 Certainty Measures

There are several ways to define signal certainty function ¢. For simplicity we
here will use
C = CyCy (24.4)

where ¢, is the voxel certainty and ¢, is the similarity certainty. The spatial
voxel certainty measure c, is defined by the input data. Further, the similarity
certainty measure ¢, has been constructed as:

Cs = CmCq , (245)

where ¢,, and ¢, are the magnitude and angular similarity measures, respec-
tively. For the magnitude certainty c,, the following Gaussian magnitude func-

tion has heen used
2
- { (I|Tn|I—I|T|I)
Cm=¢€xp|—| —————
a

where the norm of a tensor is given by |[T!| = /##(TTT), and Ty is a tensor
calculated from a local neighborhood as explained in Sect. 24.2.3. The angular
similarity measure, ¢, is based on the inner product between the normalized
tensors and is given by

(24.6)

e = (T, T)™ = tr(TTT)™ (24.7)
where T = T/||T||. In general the spatial voxel certainty function, ¢,, will be
based on prior information about the data. The voxel certainty is set to zero
outside the signal extent to reduce unwanted border effects. If no specific local
information is available the voxel certainty is set to one. As described above,
the second certainty component, ¢s, is defined locally based on neighboring
information. The idea here is to reduce the impact of outliers, where an outlier
is defined in terms of the local signal neighborhood, and to reduce the blurring
across interfaces between regions having very different. signal characteristics.
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24.2.2 Applicability Functions

The applicability function define the localization of the operator. The family
of applicability functions used in the examples in this chapter is given by

r—% cos” (w"——'—) T P —
ﬂ. — { .',‘rlll.'lx I‘] lx (24-8)

0 otherwise

where r denotes the distance from the neighborhood center and a, 8 and rpay
are positive constants.

24.2.3 Simple Local Neighborhood Model

The simplest possible model in the NC framework is when using only one
constant basis function, simplifying the expression for the NC (24.3) to a
ratio of convolutions? [7]:

Y. a(m+1i,7+n,k+p)ey(i,j,k)T(2, 5, k)

1,7,k

To(m,n,p) = (24.9)

Y. alm+1i,7+nk+p)ey(i, j, k)

t,3.k

where (m,n,p) are the indexes that correspond to each voxel. To focus on
the power of introducing the signal/model similarity certainty measure, this
simple local neighborhood model is used in our examples below,

24.2.4 Scalar Field Regularization

Before describing the tensor case (Sect. 24.2.5), we will first present a scalar
example to show the effect of the the voxel and magnitude certainty functions.
This concept can be seen as generalization of bilateral filtering [14] into the
signal-certainty framework of normalized convolution.

Figure 24.1 shows the result of filtering a scalar signal using the proposed
technique. Figure 24.1(a) shows the original scalar signal: a noisy step func-
tion. Figure 24.1(b) shows the result using standard NC demonstrating that
reduction of noise is achieved at the expense of unwanted mixing of features
from adjacent regions. The amount of border blurring can be controlled ef-
fectively by including the new magnitude certainty measure, c,,, given by
equation (24.6). The smaller the o value, the smaller the inter region averag-
ing. The result for & = 2 is shown in Fig. 24.1(c).

* Using correlation or convolution is a matter of preference since the applicability
function is in general symrmetric.
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Fig. 24.1. Original scalar field (step edge) with added noise (a), the result without
using the magnitude certainty measurement ¢, (b), results using ¢,, with ¢ =1 (¢)
and with o = 0.5 (d). See appendix for color plates

24.2.5 Tensor Field Regularization

Figure 24.2 shows the result of filtering a synthetic 2D tensor field visual-
ized using ellipses. The original tensor field with added noise is shown in
Fig. 24.2(a) and the result in Fig. 24.2(b). In this example, the voxel cer-
tainty measure, c,, was set to one except outside the signal extent where it
was set to zero. When filtering tensor data, the angular measure ¢, is impor-
tant since it can be used to reduce mixing of information from regions having
different orientations. This is demonstrated in Fig. 24.2(c) using a = 0 and
in Fig. 24.2(d) with a = 2. Notice how the degree of mixing depends on the
angular similarity measure.

Figure 24.3 shows a region of interest (ROI) for tensor field generated from
DT-MRI data. Figure 24.3(b) shows the result of filtering the DT-MRI tensor
field using the proposed method. In this example, the voxel certainty measure,
cy, was set to one except outside the signal extent where it was set to zero.
An alternative to this is to use for example Proton Density MRI data defining
where the MR signal is reliable. For the angular certainty function, ¢,, a = 4
was used.
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Fig. 24.2. Original synthetic tensor field with added noise (a) and the result using
the proposed method using @ = 0 (b) and a = 2 (¢)

Fig. 24.3. Tensor field generated from noisy DT-MRI data (a) and result of filtering
the tensor field using the NC method (b). The ROI is the corpus callosum, the dark
bow-shaped region. See appendix for color plates

24.3 Bayesian Regularization using Multivariate
Gaussian Markov Random Fields

The use of MRFs for regularization of tensor fields has gained interest in the
last few years [13]. We will discuss a new approach for regularization of DT-
MRI data using Markov Random Fields (MRFs) in a Bayesian framework
[8, 9, 10]. The MRFs that are going to be described have Gaussian distribu-
tion [11]. A description of multivariate Gaussian distributed noise for tensors
is presented in [2]. The concept of ‘isotropic’ noise is defined resulting in a
distribution whose covariance has two parameters. Our noise model is not
constrained to be isotropic so a non-constrained model for the covariance will
be used. In this chapter we define a Bayesian model where MRF's are used for
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Fig. 24.4. Examples of 3D neighborhood systems 8(m,n, p) with different spatial
extent. The numbers indicate the number of voxels L belonging to each system

achieving a global result from local interactions described by a simple neigh-
borhood model [19]. We will first present a scalar version of the model and
later extend this to the tensor case.

24.3.1 Prior Probability Model

Let the (non-observable) scalar volume that we want estimate be described
by a random vector X with K elements. This vector is formed by rearranging
the original data with dimensions M x N x P, and thus giving K = MNP
elements.

We assume that the prior probability density function (PDF) of the non-
observable scalar field X is a K-dimensional multivariate Gauss-MRF [11]
defined by a K x 1 mean vector u, and a K x K covariance matrix C.

As the 3D spatial dependencies are assumed to be strictly local, the co-
variance matrix C will be sparse, and thus it will be more practical to work
directly with the local characteristics of the field. This is achieved by defining
a 3D neighborhood system é(m, n, p) for each voxel. Each 8(m,n, p) is a set of
L triplet indices. In Fig. 24.4, four different neighborhoods are shown. Using
each index set (one for each voxel site) we can define the sets of neighboring
random vectors d X (m,n,p) with L elements as

dX(m,n,p) = {X(m',n',p’), (m/,n',p') € J(m,n,p)} (24.10)
and the same for the squared image values § X?%(m,n,p),
0X%(m,n,p) = {Xz(m",n',p'), (m/,n',p’) € 8(m,n, p)} : (24.11)

Under these assumptions the local characteristic of the field is given by the
following conditional Gauss-MRF? [11]

p(X[6X) = (X—_*ﬁ} (24.12)

1
————exp{ — '
V2m oy p{ 20%

3 For simplicity we are omitting describing the dependence of the voxel indices
(m,n,p), unless explicitly specified.
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with
fx = % Y 8x 0% = % > 6X% -k (24.13)

the prior local mean and variance, respectively, both estimated with the max-
imum likelihood (ML) method [5]. The summations in (24.13) is over the L
elements of the sets X and §X? as defined in (24.10) and (24.11), respec-
tively.

24.3.2 Likelihood Model

In this section we will define a likelihood model for the observed (noisy) signal.
Let the observed scalar signal be defined by

Y=X+N (24.14)

where X is the wanted (non-observable) signal, and where N denotes the
noise. For simplicity we assume that the noise is independent of the signal X
to be estimated. The likelihood model (also called transition model) is given
by the conditional PDF of the observed signal Y given X, which is assumed
to be a K-dimensional multivariate Gauss-MRF with given K x 1 mean vector
X and K x K covariance matrix Cy.

In the likelihood model we will exploit the spatial dependencies of the
MRF to determine the local likelihood characteristic of the scalar data. This
is achieved by assuming the following local conditional independence property
for the PDF

p(Y|X,6X) =p(Y|X) (24.15)
which is here described by a conditional Gauss-MRF
_. o (Y — X)?
p(Y[X) = e exp{ 3%, } - (24.16)

where the local noise variance 0% = af,lx is assumed to be homogeneous,
that is, independent of the spatial indices (m,n,p). This variance has to be
estimated from the observed scalar volume Y. The estimator for the noise
variance used in the examples below is

ox = Aoy, + (1= NaX,.. » (24.17)

where 0 < A <1 is a free parameter defining the degree of regularization (low
A gives low regularization). The average local variance cri,mm is given by

Now = = Z ZZO‘, (m,n,p) (24.18)

m=1n=1 p=1

and where of.(m,n,p) is given by the ML method following the (24.13) re-

placing all the X variables with Y. The minimum local variance va is

given by
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”i’mn.. = min oy (m,n,p) (24.19)
m,n,p

The reasoning for (24.17) is that as the signal and the noise are independent,
and the total variance is given by adding the noise and the signal variance.
A possible estimator for the noise variance would then be given by a total
variance estimator in a region for which the signal is zero. If we consider
the local variance as a realization for the total variance, then the minimum
among this local variances will be a possible estimator for the noise variance
(24.19). However, due to the presence of outliers and that the local variance
has significant variability, this minimum will have a bias towards zero. An
alternative estimator for the noise variance is given by the average of the local
variances (24.18). In this case, due to the presence of signal components in
the local variances, this estimator will have a bias towards infinity. A trade-off
between these two estimators can be defined by introducing a regularization
parameter A ranging in the interval (0, 1) reducing the effect of these biases
(24.17). The two estimators in (24.18) and (24.19) naturally define two bounds
that can be used to define the maximum and minimum meaningful amount
of regularization, and the parameter A between 0 and 1 can be used as a
regularization parameter to tune the desired amount of regularization.

24.3.3 Posterior Probability Modeling

This section describes how to combine the prior probability model for the
estimated signal with the likelihood model for the observed signal. Bayes’
theorem lets us write the posterior probability density function as

p(Y[X)p(X)
p(Y)
where p(Y) depends only on the known signal Y.

In the Gaussian case the maximum a posteriori (MAP) estimation is equal
to the minimum mean square error (MMSE) estimation [5] given both by

p(X|Y) = (24.20)

Xmap = arg m}zgxp(X|Y) = Xmmse = E[X|Y] = pxy (24.21)

with pxy defined by

pxiv =Cn(Cx +Cn) mx+Cx(Cx+Cn) Y.  (2422)

In general, it is not feasible to explicitly determine Cx, Cn and px, and we
will resort to either the Gibbs sampler (GS) algorithm to iteratively find a
solution for the MMSE estimation or the simulated annealing (SA) algorithm
for the MAP estimation [3, 19]. Those algorithms are based on iteratively
visiting all the sites (voxels) by sampling the posterior local characteristic of
the field directly (temperature parameter 7' = 1) for the GS algorithm and
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using a logarithmic cooling schedule defined by a temperature parameter T
for the SA algorithm. The MMSE solution is given by the average of the
solutions achieved after each iteration of the GS algorithm and the MAP
solution is given by the last iteration of the SA algorithm (low temperature)
[19]. In practice, 20 to 50 iterations are enough to get reasonable MMSE
solutions and 10 to 20 for MAP solutions.

For determining the posterior local characteristic we will again resort to
the Bayes’ theorem:

p(Y|X)p(X|6X)
;)(Y|5X)

p(X|Y,6X) = (24.23)

where -p(Y]éX ) depends only on the known signal Y. This posterior local
characteristic is a Gauss-MRF given by [11]

1 (X — pxy)? }
X|Y,0X) = — cxp{ L 24.24
PX|V.8X) = —— o TR, (24.24)
with the following posterior local mean and variance
o% nux +o%Y . % o
pxly = —m——X Xy = S (24.25)
oy +oy ox + 0N

These expressions show that in the Gaussian case both the posterior local
mean ix|y and the posterior local variance a?,(ly can be obtained by closed
form expressions, which greatly simplifies the implementation of the method,
as well as reduces the computational burden. The proof for (24.25) is rather
involved. Some hints on how to prove it can be found in [5], the core of the
proof is that one quadratic form is to be constructed from a summation of
two quadratic forms coming from the prior and likelihood PDFs.

To determine the performance of the described method a synthetic data
volume was constructed. The volume is defined as a sphere with a one pe-
riod sawtooth radial profile. Figure 24.5(a) shows the middle slice for this
data, Fig. 24.5(b) the same volume with added noise, Fig. 24.5(c) the esti-
mated MAP solution and Fig. 24.5(d) the MMSE solution. The regularization
parameter A was set to 0.5. Notice that as the method is designed for con-
tinuous signals, it cannot deal well with discontinuities. This is noticeable in
Fig. 24.5(c) and 24.5(d) where the voxels close to the boundary have not been
filtered. The use of an edge model as proposed in [19] may be helpful. Such
models has the potential to filter the boundary voxels along the boundaries
without inter region blurring. Comparing Fig. 24.5(c) to Fig. 24.5(d), we can
see that the variability of the MAP solution is lower than the variability of
the MMSE. However the bias of the MAP solution is greater than the bias for
the MMSE. In general, the MAP method converges faster than the MMSE.
To quantitatively compare these results, we have computed the signal to noise
ratio (SNR). For the noisy data shown in Fig. 24.5(b) the SNR is 4.1, for the
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(c)

Fig. 24.5. Synthetic data volume (a), with added noise (b), the result using the
MAP estimator (c¢) and the MMSE estimator (d)

MAP solution shown in Fig. 24.5(¢) the SNR is 150.1 and for the MMSE so-
lution shown in Fig. 24.5(d) the SNR is 184.6. Measuring the SNR only close
to the discontinuity gives for the noisy data 4.8, for the MAP 18.6, and for
the MMSE 21.7. The SNR values in the continuous areas are as follows: for
the noisy 4.0, for the MAP 674.0 and for the MMSE 949.1. The SNR is better
for the MMSE than for the MAP estimator due to the bias of the latter. As
expected, the model performs better in the homogeneous areas.

Figure 24.6(a) shows a coronal view for MRI data set of a human brain and
in Fig. 24.6(b) the result after applying the proposed regularization scheme.
The regularization parameter A was set to 0.2. The noise is reduced in the
homogeneous regions without smoothing the boundaries.

24.3.4 Multi-Component Model Extension

In this section we extend the scalar case to multi-component case. For DT-
MRI we have a second-rank tensor at each voxel position which is being rep-
resented by a symmetric 3 x 3 tensor matrix.
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(a)

Fig. 24.6. A coronal slice of a MRI volume (a) and the result after applying the
3D Gaussian MRF scheme (b)

Let the non-observable tensor field be represented by a random matrix X
with dimensions 3 x 3 x M x N x P of a volume of dimensions M x N x P,
where each voxel is represented by a random tensor given by the 3 x 3 matrix

X1 X2 Xis
X(m,n,p) = | Xo1 Xoo Xo3 | . (24.26)
X3 X32 Xaz

o

Each tensor matrix X(m,n,p) is symmetric so that X;; = X;;, and has 6
different random variables. The total number of different random variables is
thus K = 6MNP. We further define a rearrangement matrix operator LT
(lower triangular part) in order to extract the 6 different elements at each
voxel position and to regroup them as a 6 x 1 column vector, X7 (m,n,p) as

Xpr(m,n,p) = LT [X(m,n,p)] = (X11 Xa1 Xa1 X2z Xa2 Xaz)® . (24.27)

By applying the rearrangement operator to each tensor, a 4D random matrix
X7 with dimensions 6 x M x N x P is obtained without repeated elements.
In order to formulate the probability density function of the tensor field we
need to rearrange the tensor field X, as a column vector, we define a second
rearrangement operator CV (column vector) as

Xcv =CV[Xyr) (24.28)

making Xy a K x 1 random vector which represents the whole tensor field.

In order to calculate the MAP or the MMSE estimator for the tensor field
X v we need to extend the prior model presented in Sect. 24.3.1, the likeli-
hood model in Sect. 24.3.2 and the posterior model in Sect. 24.3.3 by using
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6-dimensional multivariate Gaussian distribution instead of the 1-dimensional
Gaussian distribution explained for the scalar case. This should be done us-
ing the local characteristics of the field defined for each 6-component vector
variable Xy (m,n,p). A short list of what is needed to be estimated in the
method follows:

~ For the prior PDF we need to estimate the vector means py , (m,n,p) and
the covariance matrices Cx, ,.(m,n,p) by using the neighboring sites.
For the likelihood PDF we need to estimate the noise covariance matrix
CnN, ., which does not depend on the site indices (m,n,p) as the noise is
assumed to be homogeneous. This noise covariance matrix can be estimated
in a similar way as the one proposed in Sect. 24.3.2 for the scalar case, but
modified accordingly to deal with covariance matrices instead of variances.

- For the posterior PDF using the prior parameters pyx, .(m,n,p) and
Cx,,(m,n,p), the noise covariance matrix Cn,, and the observed noisy
field Y 7(m, n, p) we can determine the posterior means px .1y, . (m, 1, p)
and the posterior covariances Cx, .|y, (m,n,p) by means of*

-1 =1
EXpr|YLr™ CNLT (me* -+ CNLT) ”XLT+ cx:.:r (fo.r i g CNLT) Yf«T
(24.29)
and

-1
CXLTIYLT = Cx,r (fo.'r + CN;,—;-) Cnyr - (24.30)

These equations are a vector generalization of the ones given by (24.25) in Sect.
24.3.3. In [5] we can also find some hints on how to prove that equations. In
the vector case, special care has to be taken, however the procedure is similar
to the scalar case.

For the SA algorithm we need to sample the posterior local characteristic,
that is a 6-dimensional multivariate Gaussian distribution with parameters
Bx, vy @d Cx, .1y, - This can be done by first generating a 6 x 1 sample
vector U whose elements are independent and have Gaussian distribution with
zero mean and unit standard deviation, and then transforming this sample

according to
XLT = ﬁ DxLT|YLTU -+ ﬂxLleLT (2431)

where Dy, .|y, , is a matrix given by®

DXL’:‘[YLT = QxLTlYLT V AXL':'IYLT (24'32)

* We omit the indices (m,n,p) to enhance the readability of the equations.
% The square root of a diagonal matrix is a diagonal matrix whose elements are the
square root of the corresponding original matrix.
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(a) (b) (c)

Fig. 24.7. Original synthetic tensor field (a), with noise added (b) and regulariza-
tion result (c)

where the matrix Qx, .|y, has in its columns the eigenvectors of the covari-
ance matrix Cx, .1y, ,- The matrix Ax,..|y,, is diagonal having the corre-
sponding eigenvalues in the principal diagonal.’

In order to assure the positive semidefinite condition of the diffusion ten-
sors, the SA algorithm is modified as follows: after visiting a voxel, the condi-
tion is tested; if the test is not passed then the tensor is discarded and sampled
again until the condition is satisfied.

We have generated a 3D helix synthetic tensor field for which the internal
tensors are anisotropic and the external tensors are isotropic. Figure 24.7(a)
shows the surface corresponding to the boundary separation between the two
tensor classes. We have added noise to that tensor field and repeated the
same visualization obtaining the Fig. 24.7(b). The random spots outside the
helix surface correspond to anisotropic tensors and the internal random holes
to isotropic tensors. After applying the proposed regularization method, al-
though the field is not completely homogeneous, the two tensor classes are
recovered as shown in Fig. 24.7(c). The regularization parameter A was set
to 0.5.

We have also regularized a DT-MRI data volume of a monkey brain. The
results can be shown in Figs. 24.8, 24.9 and 24.10. The regularization parame-
ter A\ was set to 0.05. Figure 24.8(a) shows an axial view of the original noisy
tensor described by the trace of the tensors, and Fig. 24.8(b) the result after
regularization. Note that the main structures are maintained while the back-
ground noise in the flat regions have been removed. Figure 24.8(c) shows the
fractional anisotropy (FA) measure [1] for the original data and Fig. 24.8(d)

5 A real symmetric positive semidefinite matrix C can be factorized as C =
QAQ” = DD”, where D = QVA. A covariance matrix is always real, sym-
metric and positive semidefinite.
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(d)

Fig. 24.8. Axial slice of the tensor trace for the original noisy DT-MRI data from
a monkey brain (a), trace after regularization (b), axial slice of the FA measure for
the original noise DT-MRI data (c) and FA measure after regularization (d)

after regularization. The higher the FA value, the more likely the presence of
white matter fiber tracts. Notice that after regularization the white matter
structures are better defined. In Fig. 24.9(a) a glyph visualization using su-
perquadratics [6] for same data is shown. A description of these glyphs can be
found in Chap. 7. Figure 24.9(b) shows the results after regularization. Notice
that fiber tracts can be better distinguished in the filtered data set. To fur-
ther explore the result of regularization we present results from tractography
in the corpus callosum. Figure 24.10(a) displays the result of tractography in
the original data and Fig. 24.10(b) in the regularized data. Notice that the
fiber tracts are more continuous and better grouped in the filtered data.
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Fig. 24.9. Glyph visualization for a coronal slice for the original noisy DT-MRI
data from a monkey brain (a) and the same visualization after regularization (b).
See appendix for color plates

(a) (b)

Fig. 24.10. Tractography in the corpus callosum for the original noise DT-MRI
data from a monkey brain (a) and the same after regularization (b). See appendix
for color plates
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24.4 Conclusion

In this chapter we have described two different regularization methods. First
we described NC, a general method for filtering missing and uncertain data.
This filtering method solves a WLS problem by applying filters in a basis set
which are assumed to span the signal locally. In NC., a certainty is defined for
the signal, and localization of the basis functions is achieved by an applicability
function, the corresponding certainty function for the basis filters. The effect
of this is that spatial localization of the filter is achieved by a certainty window
and not by changing the filter coefficients as in traditional windowing. The
strengths of NC are the power of signals/certainty framework, and the use of
basis functions that can be defined to span a subspace locally that fits the
signal.

Second, we described a purely stochastic approach to regularization based
on Gaussian MRF modeling of the signal. The strength of this approach is
the Bayesian framework which enables an efficient control of the trade-off of
applying the model (here the Gaussian model) where it fits, and not applying
it in areas where it does not. The presented method can be improved by
introducing boundary models for the prior at an expense of increasing the
computational load.

Future work combining the best of the two approaches presented in this
chapter will likely provide interesting and useful results.
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e —

(c)

Fig. 24.1. Original scalar field (step edge) with added noise (a), the result without
using the magnitude certainty measurement ¢, (b}, results using cm with o = 1 (c)
and with o = 0.5 (d)
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Fig. 24.3. Tensor field generated from noisy DT-MRI data (a) and result of filtering
the tensor field using the NC method (b). The ROI is the corpus callosum, the dark
bow-shaped region
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Fig. 24.9. Glyph visualization for a coronal slice for the original noisy DT-MRI
data from a monkey brain (a) and the same visualization after regularization (b)
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(b)

Fig. 24.10. Tractography in the corpus callosum for the original noise DT-MRI
data from a monkey brain (a) and the same after regularization (b)
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