Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47444
Título: Anisotropic filtering with nonlinear structure tensors
Autores/as: Ruiz-Alzola, Juan 
Castaño Moraga,Carlos Alberto 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Diffusion
Anisotropic Filtering
Local Structure Tensor
Nonlinear Structure Tensor
Gaussian Smoothing, et al.
Fecha de publicación: 2006
Publicación seriada: Proceedings of SPIE - The International Society for Optical Engineering 
Conferencia: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning 
Resumen: We present an anisotropic filtering scheme which uses a nonlinear version of the local structure tensor to dynamically adapt the shape of the neighborhood used to perform the estimation. In this way, only the samples along the orthogonal direction to that of maximum signal variation are chosen to estimate the value at the current position, which helps to better preserve boundaries and structure information. This idea sets the basis of an anisotropic filtering framework which can be applied for different kinds of linear filters, such as Wiener or LMMSE, among others. In this paper, we describe the underlying idea using anisotropic gaussian filtering which allows us, at the same time, to study the influence of nonlinear structure tensors in filtering schemes, as we compare the performance to that obtained with classical definitions of the structure tensor.
URI: http://hdl.handle.net/10553/47444
ISBN: 0819461040
ISSN: 0277-786X
DOI: 10.1117/12.642918
Fuente: Proceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 6064 (60640O)
Colección:Actas de congresos
miniatura
Adobe PDF (3,97 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 29-dic-2024

Visitas

58
actualizado el 09-mar-2024

Descargas

110
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.