Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47444
Campo DC Valoridioma
dc.contributor.authorRuiz-Alzola, Juanen_US
dc.contributor.authorCastaño Moraga,Carlos Albertoen_US
dc.date.accessioned2018-11-23T13:37:09Z-
dc.date.available2018-11-23T13:37:09Z-
dc.date.issued2006en_US
dc.identifier.isbn0819461040en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/47444-
dc.description.abstractWe present an anisotropic filtering scheme which uses a nonlinear version of the local structure tensor to dynamically adapt the shape of the neighborhood used to perform the estimation. In this way, only the samples along the orthogonal direction to that of maximum signal variation are chosen to estimate the value at the current position, which helps to better preserve boundaries and structure information. This idea sets the basis of an anisotropic filtering framework which can be applied for different kinds of linear filters, such as Wiener or LMMSE, among others. In this paper, we describe the underlying idea using anisotropic gaussian filtering which allows us, at the same time, to study the influence of nonlinear structure tensors in filtering schemes, as we compare the performance to that obtained with classical definitions of the structure tensor.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 6064 (60640O)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherDiffusionen_US
dc.subject.otherAnisotropic Filteringen_US
dc.subject.otherLocal Structure Tensoren_US
dc.subject.otherNonlinear Structure Tensoren_US
dc.subject.otherGaussian Smoothingen_US
dc.subject.otherAdaptive Neighborhooden_US
dc.titleAnisotropic filtering with nonlinear structure tensorsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceImage Processing: Algorithms and Systems, Neural Networks, and Machine Learningen_US
dc.identifier.doi10.1117/12.642918en_US
dc.identifier.scopus33645665138-
dc.identifier.isi000237084700022-
dc.contributor.authorscopusid8432992900-
dc.contributor.authorscopusid56614041800-
dc.identifier.eissn1996-756X-
dc.identifier.issue60640O-
dc.relation.volume6064en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid7149838-
dc.contributor.daisngid920778-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Castano-Moraga, CA-
dc.contributor.wosstandardWOS:Ruiz-Alzola, J-
dc.date.coverdateAbril 2006en_US
dc.identifier.conferenceidevents120498-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate16-01-2006-
crisitem.event.eventsenddate18-01-2006-
crisitem.author.deptGIR IUIBS: Patología y Tecnología médica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3545-2328-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameRuiz Alzola, Juan Bautista-
crisitem.author.fullNameCastaño Moraga,Carlos Alberto-
Colección:Actas de congresos
miniatura
Adobe PDF (3,97 MB)
Vista resumida

Citas SCOPUSTM   

2
actualizado el 30-mar-2025

Visitas

58
actualizado el 09-mar-2024

Descargas

110
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.