Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47432
Título: | Modeling a robust wind-speed forecasting to apply to wind-energy production | Autores/as: | Hernández-Travieso, José Gustavo Travieso-González, Carlos M. Alonso-Hernández, Jesús B. Canino-Rodríguez, José Miguel Ravelo-García, Antonio G. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Neural-Networks Power Prediction Modeling Wind-Speed Prediction, et al. |
Fecha de publicación: | 2019 | Editor/a: | 0941-0643 | Publicación seriada: | Neural Computing and Applications | Resumen: | To obtain green energy, it is important to know, in advance, an estimation of the weather conditions. In case of wind energy, another important factor is to determine the right moment to stop the turbine in case of strong winds to avoid its damage. This research introduces a tool, not only to increase green energy generation from wind, reducing CO2 emissions, but also to prevent failures in turbines that is especially interesting for manufacturers. Using Artificial Neural Networks and data from meteorological stations located in Gran Canaria airport and Tenerife Sur airport (both in Canary Islands, Spain), a robust prediction system able to determine wind speed with a mean absolute error of 0.29 m per second is presented. | URI: | http://hdl.handle.net/10553/47432 | ISSN: | 0941-0643 | DOI: | 10.1007/s00521-018-3619-6 | Fuente: | Neural Computing and Applications[ISSN 0941-0643], v. 31 (11), p. 7891-7905 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.