Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47432
Título: Modeling a robust wind-speed forecasting to apply to wind-energy production
Autores/as: Hernández-Travieso, José Gustavo
Travieso-González, Carlos M. 
Alonso-Hernández, Jesús B. 
Canino-Rodríguez, José Miguel 
Ravelo-García, Antonio G. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Neural-Networks
Power
Prediction
Modeling
Wind-Speed Prediction, et al.
Fecha de publicación: 2019
Editor/a: 0941-0643
Publicación seriada: Neural Computing and Applications 
Resumen: To obtain green energy, it is important to know, in advance, an estimation of the weather conditions. In case of wind energy, another important factor is to determine the right moment to stop the turbine in case of strong winds to avoid its damage. This research introduces a tool, not only to increase green energy generation from wind, reducing CO2 emissions, but also to prevent failures in turbines that is especially interesting for manufacturers. Using Artificial Neural Networks and data from meteorological stations located in Gran Canaria airport and Tenerife Sur airport (both in Canary Islands, Spain), a robust prediction system able to determine wind speed with a mean absolute error of 0.29 m per second is presented.
URI: http://hdl.handle.net/10553/47432
ISSN: 0941-0643
DOI: 10.1007/s00521-018-3619-6
Fuente: Neural Computing and Applications[ISSN 0941-0643], v. 31 (11), p. 7891-7905
Colección:Artículos
Vista completa

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

131
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.