Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46170
Título: Towards contactless palmprint authentication
Autores/as: Morales, A.
Ferrer, M. A. 
Kumar, A.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: palmprint recognition
feature extraction
Fecha de publicación: 2011
Editor/a: 1751-9632
Publicación seriada: IET Computer Vision 
Resumen: This study examines the issues related to two of the most palmprint promising approaches applied to the contactless biometric authentication and presents a performance evaluation on three different scenarios. The presence of significant scale, rotation, occlusion and translation variations in the contactless palmprint images requires the feature extraction approaches that can accommodate such within class image variations. Therefore the usage and performance of traditional palmprint feature extraction methods on contactless imaging schemes remain questionable and hence all/popular palmprint feature extraction methods may not be effective in contactless frameworks. The experimental results on more than 6000 images from three contactless databases acquired in different environments suggest that the scale invariant feature transform (SIFT) features perform significantly better for the contactless palmprint images than the promising orthogonal line ordinal features (OLOF) approach employed earlier on the more conventional touch-based palmprint imaging. The experimental results further suggest that the combination of robust SIFT matching scores along with those from OLOF can be employed to achieve more reliable performance improvement. The use of publicly available databases ensures repeatability in the experiments. Therefore this study provides a new/challenging contactless hand database acquired in uncontrolled environments for further research efforts.
URI: http://hdl.handle.net/10553/46170
ISSN: 1751-9632
DOI: 10.1049/iet-cvi.2010.0191
Fuente: IET Computer Vision[ISSN 1751-9632],v. 5, p. 407-416
Colección:Artículos
miniatura
Adobe PDF (959,39 kB)
Vista completa

Citas SCOPUSTM   

80
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

68
actualizado el 15-dic-2024

Visitas

95
actualizado el 12-oct-2024

Descargas

245
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.