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Abstract: This study examines the issues related to two of the most palmprint promising approaches applied to the contactless
biometric authentication and presents a performance evaluation on three different scenarios. The presence of significant scale,
rotation, occlusion and translation variations in the contactless palmprint images requires the feature extraction approaches
that can accommodate such within class image variations. Therefore the usage and performance of traditional palmprint
feature extraction methods on contactless imaging schemes remain questionable and hence all/popular palmprint feature
extraction methods may not be effective in contactless frameworks. The experimental results on more than 6000 images from
three contactless databases acquired in different environments suggest that the scale invariant feature transform (SIFT)
features perform significantly better for the contactless palmprint images than the promising orthogonal line ordinal features
(OLOF) approach employed earlier on the more conventional touch-based palmprint imaging. The experimental results further
suggest that the combination of robust SIFT matching scores along with those from OLOF can be employed to achieve more
reliable performance improvement. The use of publicly available databases ensures repeatability in the experiments. Therefore
this study provides a new/challenging contactless hand database acquired in uncontrolled environments for further research
efforts.
1 Introduction

The hand-based biometric identification systems have
traditionally been based on peg guide [1] or the recently
explored more convenient peg-free hand imaging systems
[2]. Therefore the contact between user and device is
inevitable. The deployment of such devices with large
number of users, for example, airport access as during
the earlier USVISIT program, raises hygienic concerns. The
usage of contactless acquisition devices emerges as
the obvious solution to alleviate such hygienic concerns.
The absence of contact improves the user convenience but
results in large image variations which require robust
algorithms to accommodate such variations.

The main difference between contact-based and contactless
systems lies in the significant intra-class variations resulting
from the absence of any contact or guiding surface to
restrict such variations. Such variations can result from the
rotational and translation variations, projective distortion,
scale variations and blurring due to the hand movement
during the image acquisition. The first challenge is therefore
to employ better image normalisation while the key
research challenge is to develop robust feature extraction
and matching approaches which are invariant to such image
variations from contactless imaging.

In recent years, there have been several efforts to develop
robust approaches for contactless hand-based biometrics.
Promising results were obtained using palm texture
[3], palmvein [4] or hand geometry [5] on controlled
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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environments. The simultaneous use of 3D and 2D hand
information has been investigated in [6] to alleviate the
projective distortion problems associates to the absence of a
contact surface. The images were acquired in contactless
condition in a controlled scenario. The elevated cost of the 3D
scanners is prohibitive for its possible current deployment but
it can be a possible solution in the near future. Traditionally,
the control of illumination and background is achieved
by black box schemes. The acquisition inside a black box to
control the environmental conditions can raise concerns or
unwillingly scare the users and reduce the user acceptance.
The absence of public databases of contactless hand images
acquired in uncontrolled environments is an important lack of
the state-of-the-art.

This paper systematically investigates the application of
the two most promising feature extraction approaches for the
contactless palmprint identification [7]. The first approach
using scale invariant feature transform (SIFT) is proposed to
address the large intra-class variations from contactless
imaging. SIFT was originally proposed for object recognition
applications. Therefore we have developed modification to
this approach using images preprocessing techniques and
matches score generation to accommodate inherent image
distortions from the contactless imaging. We also examine the
performance from possibly the best approach (as shown in
[8]) in the palmprint literature using orthogonal line ordinal
feature (OLOF)-based feature extraction. The comparison
between two such feature extraction methods adds to the
existing knowledge for the performance from the contactless
407
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palmprint identification. This paper provides new/challenging
contactless hand database acquired in uncontrolled
environments for further research efforts. Our experiments
employ more than 6000 different images from three
contactless databases acquired in controlled and uncontrolled
environments conditions. These experimental results are
significant and suggest that the modified SIFT approach
performs significantly better than OLOF approach that
performed best among the several competitive approaches in
[8]. The experimentation in this paper provides more detailed
explanation on scale, occlusion, rotation and translational
tolerance capabilities and experimental illustrations from real
contactless images to ascertain such promises. However, the
features extracted from SIFT and OLOF are expected to be
complimentary and therefore it is judicious to combine these
two observations and ascertain the further improvement in the
performance.

2 Databases

In this work, we used three contactless databases acquired in
controlled and uncontrolled environmental conditions. The
uncontrolled conditions refer to the acquisition of images
in open conditions with background and surrounding
illumination uncontrolled in the office environment. The use
of publicly available databases in the performance
evaluation ensures repeatability in the experiments and it is
important for comparison with other approaches. In this
paper we employed three databases; two of them are
publically available for further research efforts.

The IITD touchless palmprint database is a publicly
available database [9] and it consists of hand images with
high projective, scale, rotational and translational variations.
The database is composed of images from the left and right
hands of 235 subjects. Considering each of the two hand
images (left and right) as belonging to two independent
users, we have 470 different hands images with a minimum
number of 6 images per user. The database was acquired in
single imaging sessions. As shown in Fig. 1, during the
acquisition illumination and background conditions were
quite controlled.
408
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The GPDS-CL1 is a new publicly available database [10]
acquired in the University of Las Palma de Gran Canaria
which is composed by 10 images of the right hand of 100
subjects. The database was acquired in single session with
uncontrolled background and illumination. Despite the
single session image acquisitions, as can be seen in Fig. 1,
the surrounding illumination conditions were varying even
for the same user.

The GPDS-CL2 database, also from the University of Las
Palmas de Gran Canaria, is a real application contactless
database consisting of 110 subjects imaging with average
number of images per subject as 14. This database is
divided into two categories of users: habitual users and
sporadic users; 70 habitual people used the system once per
week during a 4-month period; this generated 10 sessions
per user. The 40 sporadic people (those users who are not
familiar to interact with the imaging device) were acquired
in 2 or 3 sessions. The training phase was supervised
and the test phase was unsupervised. We have not rejected
any of the images from the 4-month experiments. Some
examples of acquired images can be seen in Fig. 1. This
database images show several pose, illumination and
background variations.

The main objective in building this database is to have
large number of sessions and the unsupervised conditions
for the imaging. This attempts to represent more realistic
application environment. However, the 110 subjects
employed to build this database may not be enough to
represent large population. In order to comparatively
analyse the three databases, the differences and similarities
between them are summarised in Table 1.

In terms of projective, scale and blurred variation, the
GPDS-CL2 database shows a greater variations and
distortions in the acquired images. The three databases are
examples of two different imaging environments: laboratory
environment and real/outdoor application environment.

3 Feature extraction

The images acquired in contactless schemes are often
characterised with the presence of severe rotational scale
Fig. 1 Images in first row are from two subjects in IITD touchless database while second and third row images are from two subjects in
GPDS-CL1 and GPDS-CL2 database
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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and translation changes, unlike those acquired from
conventional systems based on the use of pegs or hand
docking frame. Therefore the usage of traditional palmprint
feature extraction methods remains questionable and hence
all/popular palmprint feature extraction methods may not be
effective in contactless frameworks. This section details the
adaptation of classical OLOF and SIFT-based feature
extractors to the contactless palmprint imaging problem.

The segmentation of region of interest, that is, palmprint,
has been performed in different ways for each database. For
IITD database the palmprint segmented images is provided
along with the database. For GPDS-CL1 and CL2 databases
the procedure is similar. The device acquires hand images
in infrared and visible band illumination. The hand is easily
segmented from the infrared images and the coordinates of
the valleys between fingers are automatically located. Those
coordinates are then mapped to the corresponding visible
image and a translation and rotation invariant palmprint
area is obtained following the procedure similar as
described in [11]. In our work, we employ the contactless
palmprint images of size 150 × 150 pixels for the feature
extraction stage as described in next section.

3.1 Modified SIFT (MSIFT)

The SIFT was originally proposed in [12]. In [13] the utility
of SIFT features for palmprint identification was examined
with relatively poor results using images acquired from
flat-bed scanner, which uses constrained imaging with user-
pegs. The features extracted are invariant to image scaling,
rotation and partially invariant to change in illumination
and projective distortion. The SIFT is a feature extraction
method based on the extraction of local information. Fig. 2
resumes the major stages to generate the set of features
proposed by Lowe [12] and our proposal to adapt it to
palmprint contactless biometric systems called MSIFT.

The SIFT algorithm is based on detecting keypoints
with similar properties that are present in the reference
and questioned image. In palmprint images are acquired
contactless from hand on movement using complementary
metal-oxide semiconductor (CMOS) sensors of low resolution
(800 × 600), and the images include blurring and several
above-mentioned distortions that reduce the ability of the SIFT
algorithm to detect common keypoints. To alleviate such a
problem, we propose a preprocessing that highlights the
interesting keypoints. The algorithm that preprocesses the
image obtained by previous application of the SIFT algorithm
is called by us modified SIFT (MSIFT) and consists of six steps.

3.1.1 Preprocessing: In this paper we comparatively
evaluate several preprocessing alternatives to add robustness

Table 1 Main characteristics of IITD and GPDS-CL1 and 2

databases

Characteristics IITD GPDS-CL1 GPDS-CL2

users 234 100 110

hand acquired both right right

acquisitions per user greater than 6 10 14

sessions 1 1 3–10

acquisition method contactless contactless contactless

supervised supervised unsupervised

background controlled uncontrolled uncontrolled

illumination controlled uncontrolled uncontrolled

image resolution 800 × 600 800 × 600 800 × 600
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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to SIFT-based feature extraction approach: contrast limited
adaptive histogram equalisation, Gaussian filtering and
Gabor filtering. All of them assume that the reference and
questioned hand have similar alignment inside the image
which is true in our databases and is ensured during the
segmentation stage.

The contrast limited adaptive histogram equalisation [14]
is a preprocessing approach used to improve contrast in
the images. For an input image I(x, y), the cumulative
distribution function is used to estimate the image histogram
and a maximum desired slope to limit the contrast. The
function is used to convert the greyscale density function
into an approximately uniform density function.

The Gaussian filtering is based on 2D Gaussian filter to
obtain the weighted average intensity of a line-like region.
Its expression is as follows

f (x, y, u)= exp − x cos u+y sin u

dx

( )2

− x sin u+y cos u

dy

( )2
⎡
⎣

⎤
⎦

(1)

where u denotes the orientation of 2D Gaussian filter, dx
denotes the filter’s horizontal scale and dy denotes the
filter’s vertical scale parameter. We empirically selected the
parameters as u ¼ 0, dx ¼ 5 and dx ¼ 1.

The real 2D Gabor filter used to preprocess the palmprint
image can be defined as follows

G(x, y, u, u, w) = 1

2pw2
exp − x2 + y2

2w2

{ }
× cos {2p(ux cos u+ uy sin u)} (2)

where u is the frequency of the sinusoidal wave, u defines the
orientation selectivity of the function and w is the standard
deviation of the Gaussian envelope. In this paper we used a
Gabor filter setting similar to the [14] proposal with w ¼ 2

Fig. 2 On the left the Lowe [12] SIFT approach; on the right the
contactless palmprint MSIFT approach proposed on this paper
409
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and u ¼ 0.1. Greater robustness against brightness variation is
ensured by removing the average Gabor filter values from the
discrete Gabor filter.

G′(x, y, u, u, w) = G(x, y, u, u, w)

−
S

2n+1
i=1 S

2n+1
j=1 G(i, j, u, u, w)

(2n + 1)2 (3)

3.1.2 Scale-space extrema detection: It is employed
over all scales and image locations. It is based on the
difference-of-Gaussian function to identify potential interest
points that are invariant to scale and orientation. The input
data is transformed to the space L(x, y, s) as follows

L(x, y, s) = g(x, y, s) ∗ I ′(x, y) (4)

where * corresponds to convolution operator, I′(x, y) is the
preprocessed input image and g(x, y, s) is a Gaussian
function with bandwidth s. The difference-of-Gaussian
function is defined as

D(x, y, s) = (g(x, y, ks) − g(x, y, s)) ∗ I ′(x, y)

= L(x, y, ks) − L(x, y, s) (5)

3.1.3 Keypoint localisation: A detailed model is fit to
determine location and scale of each candidate location.
The interpolation is done using the quadratic Taylor
expansion of the difference-of-Gaussian scale-space
function D(x, y, s) with the candidate keypoint as the
origin. This Taylor expansion is given by

D(x) = D + ∂DT

∂x
+ 1

2
xT ∂

2DT

∂x2
x (6)

where the maxima and minima of D and its derivatives are
evaluated at the candidate keypoint and x ¼ (x, y, s) is the
offset from this point.

3.1.4 Orientation assignment: In our experiments we
had used 16 orientations for each keypoint location based
on local image gradient directions. For an image sample
L(x, y) at scale s, the gradient magnitude, m(x, y) and
orientation, u(x, y), are processed using pixel differences
(see (7))

u(x, y) = tan−1 L(x, y + 1) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)

( )
(8)

3.1.5 Keypoint descriptor: Around each keypoint, the
local gradients are measured at the selected scale to obtain
a descriptors vector {di}

M
i=1 with M keypoints. Once the

keypoints are extracted, the query image is matched and
compared with each of the features extracted with the
corresponding images in the registration database (from the
training feature sets). The verifier evaluates the number of
matches between a questioned and the training images. Let
{dt

i}
M
i=1 and {dq

i }L
j=1 be the set of training and questioned

keypoint descriptors, respectively. The distance between
410
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keypoint descriptors is computed from the following

Dd(i, j) = ‖dt
i − dq

i ‖2 (9)

where ‖.‖ is the Euclidean norm. We define a match between
a training dt

i and a questioned dq
i keypoint when

1.5Dd(i, j) , min = {Dd(i, j)}L
n=1 (10)

with n = j. The threshold is estimated heuristically during the
training stage and it is not particularly sensitive to values in
the range of 1.2–1.7.

3.1.6 Matches validation: The validation of matching
scores for the authentication decisions is common in several
other biometric feature extraction approaches. In this paper
we propose a validation based on coordinates distance
between keypoints to improve the SIFT performance on
the contactless palmprint biometrics. The hypothesis is that
the coordinates from two keypoints matched must be
similar if we correct the average displacement from all
the matches. Let ct

i = {xt
i, yt

i}
M
i=1 and cq

i = {xq
i , yq

i }L
i=1 be

the set of training and questioned keypoint coordinates,
respectively. The distance between coordinates is calculated
from the following

Dc(i, j) = ‖ct
i − cq

i ‖2 (11)

where ‖.‖ is the Euclidean norm. We define a match between
a training ct

i and a questioned cq
i keypoint when

Dc(i, j) = 1.5

M

∑M
i=1

‖ct
i − cq

j ‖2 (12)

Owing to high pose variance in contactless imaging, we used
a 1.5 weighting factor to accommodate small alignment errors
between palms. The maximum number of matches between
the questioned and the training set is the similarity score. If
the similarity score is greater than a threshold, the
questioned image is positively authenticated.

3.2 Orthogonal line ordinal features

The OLOF method was originally introduced in [8] and was
investigated for the palmprint feature extraction. The
comparison of OLOF method with several other competing
methods [15–17] in this reference suggests the superiority
of OLOF with such competitive feature extraction methods.
The OLOF presented significantly improved results but on
conventional databases that are acquired from constrained
imaging.

The orthogonal filters are obtained using two Gaussian
filters as follows

OF(u) = f (x, y, u) − f x, y, u+ p

2

( )
(13)

Each palm image is filtered using three ordinal filters, OF(0),
OF(p/6) and OF(p/3). In order to ensure the robustness
against brightness, the discrete filters OF(u), are turned to
have zero average. The palmprint features are obtained
m(x, y) =
�����������������������������������������������������������������
(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2

√
(7)
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filtering the palm image by the three ordinal filters, binarising
the results with a threshold equal to zero, and resizing the
binary image n × n ¼ 50 × 50 pixels. An example of the
feature matrix obtained using the three ordinal matrixes can
be seen in Fig. 3.

The matching distance between the palmprint image
feature matrix Q ¼ {Qu¼0, Qu¼p/6, Qu¼p/3} and the
palmprint image feature matrix P ¼ {Pu¼0, Pu¼p/6, Pu¼p/3}
(i.e. reference and questioned templates) is computed by the
normalised Hamming distance, which can be described as
follows

D = (Du=0 + Du=p/6 + Du=p/3)/3 (14)

being

Du = 1 −
S

n
i=1S

n
j=1Pu(i, j) ⊗ Qu(i, j)

n2
(15)

where the Boolean operator ⊗ is the conventional XOR
operator. The numeric value of D ranges between 0 and 1
and the best matching is observed when the value of D is
1. Because of the inherent intra-class variations in the
contactless imaging and imperfections in preprocessing, the
vertical and the horizontally translation ordinal feature map
is used to ascertain the best possible matching score. The
ranges of the vertical, horizontal translations and rotations
are empirically determined and were fixed as from 26 to 6
(in the steps of two degrees). The maximum D value
obtained from such multiple translated matching is assigned

Fig. 3 Ordinal feature image, OF(0) + OF(p/6) + OF(p/3), from
a contactless palmprint image
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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as the final matching score. If the final matching score is
greater than a threshold, the training templates and the
questioned images are authenticated as belonging to the
same person.

3.3 Matching score fusion

Combining scores obtained from different feature extraction
approaches is a popular method of improving the
performance for the multibiometrics identification. In this
section we propose a method to determine the weights for
the weighted combination of MSIFT and OLOF scores.
Figs. 4 and 5 show the distribution of genuine and imposter
matching scores from the two feature extraction approaches.
We can ascertain that the matching scores from both the
features are widely separated. The distribution of matching
scores also suggests that the matching scores from the two
matchers are likely to be uncorrelated and therefore more
effectively employed for combination [18].

The OLOF and MSIFT scores were first normalised
based on min–max approach [19]. The combined matching
scores were generated using the weighted sum approach as
follows

sfusion = wsMSIFT + (1 − w)sOLOF (16)

where sMSIFT and sOLOF are the scores obtained with MSIFT
and OLOF features, w is the weighting factor and sfusion is the
combined score which will be used to verify the input
identity.

The value of w is obtained as follows. Let sg
MSIFT(i)

and sg
OLOF(i), 1 ≤ i ≤ Ng be the scores of the genuine

training samples for MSIFT and OLOF approach,
respectively. Let sf

MSIFT(i) and sf
OLOF(i), 1 ≤ i ≤ Nf the

scores of the forgery training samples of MSIFT and OLOF
approach, respectively. A distance measure between the
distribution of genuine and forgery scores is obtained with
MSIFT approach as follows

DMSIFT = (mg
MSIFT − mf

MSIFT)T
∑

(mg
MSIFT − mf

cCMSIFT)

(17)

where

mg
MSIFT =

∑Ng

i=1

sg
MSIFT/Ng, mf

MSIFT =
∑Nf

i=1

sf
MSIFT/Nf
Fig. 4 Distribution of matching scores for IITD database
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Fig. 5 Distribution of matching scores for GPDS-CL1 database and GPDS-CL2 database
are the means S = (Sg
MSIFT + S

f
MSIFT)/2 with

∑g

MSIFT

=
∑Ng

i=1

(sg
MSIFT(i) − mg

MSIFT)2/Ng and

∑f

MSIFT

=
∑Nf

i=1

(sf
MSIFT(i) − mf

MSIFT)2/Nf

the covariance matrixes. The distance between genuine and
forgeries for OLOF approach DOLOF is obtained in the same
way. The weighting factor is obtained as

w = DMSIFT/(DOLOF + DMSIFT) (18)

4 Experiments

4.1 Experimental methodology

We used the three databases as described in Table 1 to
perform rigorous experiments to comparatively ascertain
the performances on different scenarios. The protocols for
the experiments with all the three databases are similar. The
experimental results are evaluated using DET curves, equal
error rates (EER), false acceptance and rejection rates (FAR
and FRR, respectively). The FAR and FRR are estimated
from a decision threshold estimated as a priori. A common
method of estimating this decision threshold is to employ
the point where the probability density function of the
genuine and imposter scores intersect. Both types of scores
are obtained from the training samples of all the users. In
this scenario, the threshold is obtained with information of
the future imposters. In real applications, the system does
not have information about the imposters. Therefore we
attempted to ascertain more realistic results using the
decision threshold generated from using 20% of the users
randomly chosen as imposter scores and the scores of the
training samples of the remainder 80% of the user as
genuine. Therefore the average of experimental results is
estimated using the 80% of the users and by the repetition
of all the experiments 10 times.

The IITD palmprint database images were acquired in single
session, therefore we used all the images for the performance
evaluation. We used one image for test and the rest of the
five images for the training. This was repeated six times
(leave one out) and the average of the experimental results is
presented. Therefore the total numbers of genuine scores and
imposter scores are 22 560 (235 × 2 × 6 × 0.8 × 10) and
5 279 040 (235 × 2 × 234 × 6 × 0.8 × 10), respectively.
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The GPDS-CL1 database experiments were carried out
using the first five images as training set and the remaining
five images as test set. Therefore the numbers of genuine
scores and imposter scores are 8000 (100 × 10 × 0.8 × 10)
and 792 000 (100 × 99 × 10 × 0.8 × 10), respectively.

For the experiments with GPDS-CL2 database, we
employed the first five images (from first session) as training
samples and the rest of the images (rest of sessions) as test
samples. We did not use images from different sessions for
training to ascertain more realistic verification which can
also account for the temporal variations introduced from
time interval. Therefore the numbers of genuine scores and
imposter scores are 7920 (110 × 9 × 0.8 × 10) and
1 342 880 (110 × 109 × 14 × 0.8 × 10), respectively.

4.2 Comparing preprocessing techniques applied
to SIFT

The use of different preprocessing techniques was evaluated
in order to improve the traditional SIFT approach applied to
original greyscale images. In Fig. 6 we show the different

Fig. 6 Extracted SIFT keypoints over palmprint greyscale image
(upper left), palmprint image equalised by contrast limited
adaptive histogram method (upper right) and palmprint
preprocessed with Gaussian and Gabor filter (down left and right,
respectively)
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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Fig. 8 DET curves for different preprocessed techniques applied to SIFT with GPDS-CL1 (right) and GPDS-CL2 (left)

Fig. 7 DET curves for different preprocessed techniques applied to SIFT with IITD (left) and IITD (right)
keypoints localisation of the SIFT algorithm and the MSIFT
algorithms with the three preprocessing approaches
discussed in Section 3.1, that is, contrast limited
adaptive histogram equalisation, Gaussian filtering and
Gabor filtering.

The keypoint obtained with the SIFT algorithm on greyscale
images focus the keypoints localisation on the principal lines
which may not be the most distinctive information on the
contactless hand images. A more uniform distribution of the
keypoints over the palmprint detecting secondary lines,
wrinkles and creases can significantly improve the
method performance. It can be ascertained from the sample
results in Fig. 6 that the usage of even Gaussian or Gabor
preprocessing significantly improves the localisation of
palmprint lines, wrinkles and creases.

Figs. 7 and 8 show the DET curves which compare the
performance between SIFT and MSIFT based on original
greyscale images and pre-processed images using, contrast
limited adaptive histogram equalisation, Gaussian filtering
and Gabor filtering.

All the tested pre-processing techniques outperform the
results obtained with original greyscale images. Gabor
outperforms Gaussian and adaptive histogram equalisation
in both scenarios but this improvement is significantly
better in real application scenario.

4.3 Performance comparison between OLOF
and MSIFT

The experimental results are reported by using the EER, the
FAR and FRR in the a priori thresholds without forger
information, as shown in Tables 2–4. In Table 4 we show
two different results: the results using the complete ten
session images and the results using only the first session
images. The results in terms of FAR and FRR obtained with
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
doi: 10.1049/iet-cvi.2010.0191
a priori thresholds are not far from the EER suggesting that it
is possible to estimate the thresholds without the imposter
information.

Table 2 Average performance (EER) from IITD database

Matcher EER (%) A priori threshold

FAR (%) FRR (%)

MSIFTR 0.33 0.47 0.28

MSIFTL 0.27 0.53 0.14

OLOFR 1.31 1.51 1.12

OLOFL 0.61 0.65 0.59

FusionR 0.21 0.36 0.16

FusionL 0.20 0.29 0.12

Table 3 Average performance (EER) from GPDS-CL1

Matcher EER (%) A priori threshold

FAR (%) FRR (%)

MSIFT 0.31 0.03 0.77

OLOF 0.98 1.04 0.93

fusion 0.17 0.05 0.22

Table 4 Average performance (EER) from GPDS-CL2

Matcher EER (%) A priori threshold

1 session 10 sessions FAR (%) FRR (%)

MSIFT 0.43 1.39 0.61 2.31

OLOF 1.63 1.71 2.11 1.39

fusion 0.19 0.57 0.23 1.02
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Fig. 9 DETs curves for IITD database and OLOF, MSIFT and combination approaches

Fig. 10 DETs curves for GPDS-CL1 database on the left and GPDS-CL2 database on the right using first session images (discontinuous line)
and all session images (continuous line)
Fig. 9 shows the DET curves from the IITD touchless
palmprint database, whereas Fig. 10 illustrates the DET
curves obtained from GPDS-CL1 and GPDS-CL2 databases.
Concisely, The GPDS-CL2 database is composed of images
from different sessions allowing a comparison between
results obtained using image from one session or all
sessions. Fig. 10 (left) shows the GPDS-CL1 DETs curves
and Fig. 10 (right) presents two different experiments: DET
curves obtained using images from the first session of
GPDS-CL2 (discontinuous line) and DETs curves obtained
using the complete ten session images (continuous line).

The experimental results summarised in Tables 2–4 and
Figs. 9 and 10 suggest that MSIFT approach significantly
outperforms OLOF approach for authentication in laboratory
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conditions database (IITD and GPDS-CL1) and real
condition unisession and multisession database (GPDS-CL2).

The experiments done with images acquired in just one
session (IITD, GPDS-CL1 an images of the first session of
GPDS-CL2) produce similar results. The results obtained with
the experiments done with all the images of the multisession
GPDS-CL2 database show significantly differences in genuine
scores distributions, see Fig. 11. In real systems with
uncontrolled environments conditions the large intra-class
variance produce genuine score degradation. This degradation
is more obvious in MSIFT approach. Our experiments suggest
that the intraclass variance (variance between images from the
same user) increases significantly when the number of
sessions increases, which further degrades the performance.
Fig. 11 MSIFT (left) and OLOF (right) scores distribution for one session and 10 session experiments using GPDS-CL2 database
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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On the other hand, it is important to note that the interclass
variance (variance between images from different users) does
not show noticeable difference when the number of sessions
increases. Fig. 11 show similar impostors scores distributions
for 1-session and 10-session experiments.

4.4 Robustness of MSIFT features

The better performance of MSIFT can be explained by the
robustness of this feature extraction method in the presence
of typically distortions associated to contactless imaging,
for example, translation, rotation, scale, blurring, occlusion
and projective distortions among others. In this paper we
study the robustness of MSIFT and OLOF in the presence
of four of the most commonly observed source of image
distortions: rotation, scale, translation and occlusion.

With the above aim, after dividing the GPDS-CL1 database
in training and test sets, the test set was intentionally
distorted changing the scale of the images, rotate and
translate them and also adding occlusion in the test set. We
then comparatively evaluate the typical matching scores
from such images impaired by pose changes (along with
undistorted train images).

The matching scores are computed using MSIFT and
OLOF approach. In the first experiment we used the test
images and imparted 20% scale reduction representing
inaccurate hand presentation scenario in contactless
imaging. In addition, we introduced additional rotational
distortion by 208 of rotation in the original image. We also
simulate translation variation introducing a vertical and
horizontal displacement of 20% of the images size on the
original images. The occlusion is simulated by forcing to
zero a region equal to the 20% of total area of the images.
We repeat the experiment with all contactless palmprint
images of the GPDS-CL1 database. The averaged EER
obtained using MSIFT, OLOF and fusion are shown in
Table 5. The first row corresponds to the EER obtained
using the first four images from each user as training set
and the remaining six images as test set. For the remaining
rows we applied the variations to the test set. The EER
obtained is a measure of the robustness of each feature
approach in the presence of the most common contactless
scheme variations.

The experimental results in Table 5 illustrate significant
degradation in the performance of OLOF in the presence of
variations resulting from rotation, translation and occlusion.
With robust image segmentation methods, these distortions
have a least/minor influence in traditional contact-based
palmprint identification systems. In contactless schemes the
presence of large pose variations increases the influence of
these distortions and drastically degrades the system
performance. These results attempt to ascertain why MSIFT
can be more useful for the contactless palmprint images as
compared to other popular palmprint approaches.

Table 5 EER robustness to contactless scenario variations

Distortion EER

MSIFT, % OLOF, %

original (no distortion) 0.31 0.98

scale (40%) 0.43 2.24

rotation (208) 0.69 38.4

translation (20%) 0.91 26.7

occlusion (20%) 0.61 67.6
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 407–416
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4.5 Computational load

In this section we present the estimated computational time
for the feature extraction and matching stages. Table 6
shows the computation time for MSIFT and OLOF feature
extraction and matching on Pentium dual-core 1.66 GHz
with 2 GB RAM using MATLAB 2007b. Table 6 shows
the averaged run time results using the GPDS-CL1 database.

In terms of computational complexity, MSIFT approach
demands more resources than OLOF approach. Although
OLOF is six times faster, MSIFT approach computational
time is lower than 2 s with a low performance hardware/
software setting and image size of 150 × 150 pixels.

5 Conclusions

In this paper we systematically examined the contactless
palmprint authentication problem and presented an analysis of
resulting image variability. The MSIFT approach proposed
and investigated in this paper outperforms the OLOF approach
in laboratory conditions. Our experimental results on the three
different contactless palmprint database suggest that the
combination of MSIFT and OLOF approach offers most
promising alternative for more reliable contactless palmprint
authentication applications, primarily in the presence of large
intraclass variations resulting from the contactless imaging in
multisession and unsupervised conditions.

This paper has detailed the experiments using three
different contactless palmprint databases with more than
6000 images from 680 different hands. These images were
acquired in different conditions and achieve EER of 0.2%
for controlled condition database (laboratory scenario) and
0.6% for uncontrolled conditions database (real application
scenario). In controlled conditions with single session
images, MSIFT method significantly improves the equal
error rate as compared to those from OLOF method results.
The reason of this improvement can be primarily attributed
to the robustness of MSIFT approach against the contactless

Table 6 Computational time (seconds)

Stage Image size MSIFT OLOF

feature extraction 300 × 300 4.12 0.28

150 × 150 1.81 0.07

75 × 75 0.25 0.02

matching – 0.007 0.25

Table 7 Related work on contactless palmprint authentication

Reference Features Database Subjects EER, %

[20] cohort information IITD [9] 235 1.31

[21] palmprint

directional coding

proprietary 136 1.97

[6] 2D and 3D palm

features

PolyU 177 0.72

[22] palmprint Gabor

filtering

proprietary 50 8.70

[4] multispectral

palmprint OLOF

proprietary 165 0.50

this paper MSIFT and OLOF IITD [9] 235 0.21

GPDS-CL1

[10]

100 0.17

GPDS-CL2 110 0.57
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image variations. In uncontrolled conditions with 10-session
images, MSIFT and OLOF show similar performance.
Working in realistic scenarios with multisession databases
and uncontrolled illumination conditions is crucial to obtain
realistic estimate on the results and performance. In our
experiments MSIFT achieved similar performance than
OLOF in real application scenario. In the presence of these
large intraclass variations the combination of MSIFT and
OLOF approaches offers most promising alternative.

The contactless palmprint approaches have also been
studied earlier. Reference [3] presented contactless palmprint
authentication but employed multispectral images and its
combination to achieve performance improvement. Table 7
presents a summary of related work on contactless palmprint
authentication and illustrate lack of any effort to examine the
strength of MSIFT features for contactless imaging. This
paper has presented such experiments with promising results.
Our further research efforts are focused to exploit the
colour information, which can also be simultaneously
extracted during contactless palmprint imaging, and develop
discriminant models to effectively assist in more reliable
contactless palmprint identification. Another research
direction is to explore the fusion with other uncorrelated
biometrics as contactless finger geometry features which can
also be simultaneously acquired from the contactless hand
images.
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