Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45504
Título: Analysis of local descriptors features and its robustness applied to ear recognition
Autores/as: Morales, Aythami
Ferrer, Miguel A. 
Diaz-Cabrera, Moises 
Gonzalez, Esther 
Clasificación UNESCO: 1203 Ciencia de los ordenadores
1206 Análisis numérico
2405 Biometría
Palabras clave: Robustness
Image recognition
Matched filters
Ear
Fecha de publicación: 2013
Publicación seriada: Proceedings - International Carnahan Conference on Security Technology 
Conferencia: 47th International Carnahan Conference on Security Technology (ICCST) 
2013 47th International Carnahan Conference on Security Technology, ICCST 2013 
Resumen: In last ten years, ear recognition has attracted the interest of scientific community. The advantages of this biometric technology include the remote acquisition, permanence in shape and appearance along time and relatively uniqueness for each individual. This paper focuses on the robustness of local descriptors features for ear recognition and includes the evaluation of two promising techniques: SIFT and Dense-SIFT. The experiments include two public available databases as well as synthetic and real occlusion. The obtained results suggest the promising performance of the proposed local descriptors under controlled conditions. Nevertheless, the distortions and the quality of the sample are strongly determined by the level of collaboration of the subjects. In security applications related to surveillance or forensics such collaboration could be null. The results under hard conditions highlight the difficulties of such features in presence of elevate real distortion and the necessity of further improve the traditional approaches.
URI: http://hdl.handle.net/10553/45504
ISBN: 9781479908899
ISSN: 1071-6572
DOI: 10.1109/CCST.2013.6922040
Fuente: Proceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (6922040)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

12
actualizado el 17-nov-2024

Visitas

112
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.