Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45498
Título: The use of hyperspectral analysis for ink identification in handwritten documents
Autores/as: Morales Moreno,Aythami 
Ferrer, Miguel A. 
Diaz-Cabrera, Moises 
Carmona, Cristina 
Thomas, Gordon L.
Clasificación UNESCO: 3307 Tecnología electrónica
220990 Tratamiento digital. Imágenes
Palabras clave: Hyperspectral imaging
Handwritten document analysis
Ink identification
Fecha de publicación: 2014
Publicación seriada: Proceedings - International Carnahan Conference on Security Technology 
Conferencia: 48th Annual IEEE International Conference Carnahan on Security Technology (ICCST) 
Resumen: Hyperspectral analysis is employed in many different areas, such as medicine, environmental studies, security and forensics. Focusing on law enforcement, ink discrimination has become an important factor for the detection of fraudulent documents. This paper proposes an approach for ink analysis in handwritten documents and pen verification using hyperspectral analysis and Least Square SVM classification. The proposed method obtains immediate results in a non-contact way from the document or test sample. The first step is to determine the best possible lighting conditions. Then a detailed study is made of components and properties of the ink and pens used. This paper proposes a classification method based on the hyperspectral characteristics of the ink derived from its physical properties. Furthermore, a database of hyperspectral curves of several types of inks is made, which is used to obtain the characteristics of different inks. The proposed method for automated ink type identification is tested using 25 different pens and more than 1000 samples. The achieved discrimination between types of ink was 87.5%. The experimental protocol includes three different scenarios.
URI: http://hdl.handle.net/10553/45498
ISSN: 1071-6572
DOI: 10.1109/CCST.2014.6986980
Fuente: Proceedings - International Carnahan Conference on Security Technology [ISSN 1071-6572],v. 2014-October (6986980)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

14
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 25-feb-2024

Visitas

130
actualizado el 20-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.