Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/45497
Título: | Cognitive Inspired Model to Generate Duplicated Static Signature Images | Autores/as: | Diaz-Cabrera, Moises Ferrer, Miguel A. Morales, Aythami |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Hidden Markov models Signature verification , Biometric recognition |
Fecha de publicación: | 2014 | Publicación seriada: | Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR | Conferencia: | 14th International Conference on Frontiers in Handwriting Recognition (ICFHR) 14th International Conference on Frontiers in Handwriting Recognition, ICFHR 2014 |
Resumen: | The handwriting signature is one of the most popular behavioral biometric traits for person recognition. Such recognition systems capture the personal signing behaviour and its variability based on a limited number of enrolled signatures. In this paper a cognitive inspired model based on motor equivalence theory is developed to duplicate off-line signatures from one real on-line seed. This model achieves duplicated signatures with a natural variability. It is validated with an off-line signature verifier based on texture features and a SVM classifier. The results manifest the complementarity of the duplicated signatures and the utility of the model. | URI: | http://hdl.handle.net/10553/45497 | ISBN: | 9781479943340 | ISSN: | 2167-6445 | DOI: | 10.1109/ICFHR.2014.18 | Fuente: | Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR[ISSN 2167-6445],v. 2014-December (6980997), p. 61-66 |
Colección: | Actas de congresos |
Citas SCOPUSTM
16
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 17-nov-2024
Visitas
112
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.