Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45491
Título: Modeling the lexical morphology of Western handwritten signatures
Autores/as: Diaz-Cabrera, Moises 
Ferrer, Miguel A. 
Morales, Aythami
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hidden Markov models
Handwriting recognition
Fecha de publicación: 2015
Proyectos: "Sintesis de Muestras Biométricas Para Aplicaciones de Salud y Seguridad" 
Publicación seriada: PLoS ONE 
Resumen: A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures.
URI: http://hdl.handle.net/10553/45491
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0123254
Fuente: PLoS ONE [EISSN 1932-6203], v. 10 (e0123254)
Colección:Artículos
miniatura
Adobe PDF (901,96 kB)
Vista completa

Citas SCOPUSTM   

23
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

19
actualizado el 15-dic-2024

Visitas

81
actualizado el 27-jul-2024

Descargas

138
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.