Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44018
Título: On the selection of non-invasive methods based on speech analysis oriented to automatic Alzheimer disease diagnosis
Autores/as: López-de-Ipiña, Karmele
Alonso, Jesus-Bernardino 
Manuel Travieso, Carlos 
Solé-Casals, Jordi
Egiraun, Harkaitz
Faundez-Zanuy, Marcos
Ezeiza, Aitzol
Barroso, Nora
Ecay-Torres, Miriam
Martinez-Lage, Pablo
De Lizardui, Unai Martinez
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Alzheimer’s disease diagnosis; spontaneous speech; emotion recognition; machine learning; non-invasive diagnostic techniques; dementia
Fecha de publicación: 2013
Editor/a: 1424-8220
Publicación seriada: Sensors 
Resumen: Abstract: The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
URI: http://hdl.handle.net/10553/44018
ISSN: 1424-8220
DOI: 10.3390/s130506730
Fuente: Sensors[ISSN 1424-8220],v. 13 (5), p. 6730-6745
Colección:Artículos
miniatura
Adobe PDF (643,48 kB)
Vista completa

Citas SCOPUSTM   

158
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

129
actualizado el 17-nov-2024

Visitas

91
actualizado el 27-jul-2024

Descargas

212
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.