Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44018
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | López-de-Ipiña, Karmele | en_US |
dc.contributor.author | Alonso, Jesus-Bernardino | en_US |
dc.contributor.author | Manuel Travieso, Carlos | en_US |
dc.contributor.author | Solé-Casals, Jordi | en_US |
dc.contributor.author | Egiraun, Harkaitz | en_US |
dc.contributor.author | Faundez-Zanuy, Marcos | en_US |
dc.contributor.author | Ezeiza, Aitzol | en_US |
dc.contributor.author | Barroso, Nora | en_US |
dc.contributor.author | Ecay-Torres, Miriam | en_US |
dc.contributor.author | Martinez-Lage, Pablo | en_US |
dc.contributor.author | De Lizardui, Unai Martinez | en_US |
dc.contributor.other | Lopez-de-Ipina, Karmele | - |
dc.contributor.other | Eguiraun, Harkaitz | - |
dc.contributor.other | Sole-Casals, Jordi | - |
dc.contributor.other | Ecay-Torres, Mirian | - |
dc.contributor.other | Martinez de Lizarduy Sturtze, Unai | - |
dc.contributor.other | Barroso, Nora | - |
dc.contributor.other | Alonso-Hernandez, Jesus B. | - |
dc.contributor.other | Faundez-Zanuy, Marcos | - |
dc.contributor.other | Travieso-Gonzalez, Carlos M. | - |
dc.contributor.other | Ezeiza, Aitzol | - |
dc.date.accessioned | 2018-11-21T19:36:30Z | - |
dc.date.available | 2018-11-21T19:36:30Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/44018 | - |
dc.description.abstract | Abstract: The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients. | en_US |
dc.language | spa | en_US |
dc.publisher | 1424-8220 | - |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors[ISSN 1424-8220],v. 13 (5), p. 6730-6745 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Alzheimer’s disease diagnosis; spontaneous speech; emotion recognition; machine learning; non-invasive diagnostic techniques; dementia | en_US |
dc.title | On the selection of non-invasive methods based on speech analysis oriented to automatic Alzheimer disease diagnosis | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.3390/s130506730 | |
dc.identifier.scopus | 84879021372 | - |
dc.identifier.isi | 000319445600072 | - |
dcterms.isPartOf | Sensors | - |
dcterms.source | Sensors[ISSN 1424-8220],v. 13 (5), p. 6730-6745 | - |
dc.contributor.authorscopusid | 56263484400 | - |
dc.contributor.authorscopusid | 24774957200 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.contributor.authorscopusid | 14018739300 | - |
dc.contributor.authorscopusid | 55765445200 | - |
dc.contributor.authorscopusid | 6701452104 | - |
dc.contributor.authorscopusid | 14022747600 | - |
dc.contributor.authorscopusid | 23392059500 | - |
dc.contributor.authorscopusid | 55765237800 | - |
dc.contributor.authorscopusid | 6603115791 | - |
dc.contributor.authorscopusid | 55765340200 | - |
dc.description.lastpage | 6745 | - |
dc.description.firstpage | 6730 | - |
dc.relation.volume | 13 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:000319445600072 | - |
dc.contributor.daisngid | 1399740 | - |
dc.contributor.daisngid | 418703 | - |
dc.contributor.daisngid | 265761 | - |
dc.contributor.daisngid | 642260 | - |
dc.contributor.daisngid | 4627708 | - |
dc.contributor.daisngid | 259157 | - |
dc.contributor.daisngid | 1492715 | - |
dc.contributor.daisngid | 1625336 | - |
dc.contributor.daisngid | 6736194 | - |
dc.contributor.daisngid | 499760 | - |
dc.contributor.daisngid | 16365767 | - |
dc.identifier.investigatorRID | K-4379-2013 | - |
dc.identifier.investigatorRID | C-3915-2017 | - |
dc.identifier.investigatorRID | B-7754-2008 | - |
dc.identifier.investigatorRID | N-5758-2014 | - |
dc.identifier.investigatorRID | G-6692-2016 | - |
dc.identifier.investigatorRID | C-1082-2018 | - |
dc.identifier.investigatorRID | N-5977-2014 | - |
dc.identifier.investigatorRID | F-6503-2012 | - |
dc.identifier.investigatorRID | N-5967-2014 | - |
dc.identifier.investigatorRID | No ID | - |
dc.identifier.external | WOS:000319445600072 | - |
dc.contributor.wosstandard | WOS:Lopez-de-Ipina, K | |
dc.contributor.wosstandard | WOS:Alonso, JB | |
dc.contributor.wosstandard | WOS:Travieso, CM | |
dc.contributor.wosstandard | WOS:Sole-Casals, J | |
dc.contributor.wosstandard | WOS:Egiraun, H | |
dc.contributor.wosstandard | WOS:Faundez-Zanuy, M | |
dc.contributor.wosstandard | WOS:Ezeiza, A | |
dc.contributor.wosstandard | WOS:Barroso, N | |
dc.contributor.wosstandard | WOS:Ecay-Torres, M | |
dc.contributor.wosstandard | WOS:Martinez-Lage, P | |
dc.contributor.wosstandard | WOS:de Lizardui, UM | |
dc.date.coverdate | Enero 2013 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,627 | |
dc.description.jcr | 2,048 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-7866-585X | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Alonso Hernández, Jesús Bernardino | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Artículos |
Citas SCOPUSTM
158
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
131
actualizado el 24-nov-2024
Visitas
91
actualizado el 27-jul-2024
Descargas
212
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.