Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43106
Título: Performance analysis of classification methods for indoor localization in VLC networks
Autores/as: Sánchez-Rodríguez, D. 
Alonso-González, I.
Sánchez-Medina, J. 
Ley-Bosch, C. 
Díaz-Vilariño, L.
Clasificación UNESCO: 3307 Tecnología electrónica
Fecha de publicación: 2017
Publicación seriada: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Conferencia: ISPRS Geospatial Week 2017 
Resumen: © Authors 2017.Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
URI: http://hdl.handle.net/10553/43106
ISSN: 2194-9042
DOI: 10.5194/isprs-annals-IV-2-W4-385-2017
Fuente: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences [ISSN 2194-9042], v. 4, p. 385-391
Colección:Actas de congresos
miniatura
Adobe PDF (1,05 MB)
Vista completa

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Visitas

98
actualizado el 13-jul-2024

Descargas

145
actualizado el 13-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.