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ABSTRACT: 

 

Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware 

services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much 

room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light 

Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is 

immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF 

based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC 

networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, 

precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90%. The best tested classifier 

yielded a 99.0% accuracy, with an average error distance of 0.3 centimetres. 

 

 

*  Corresponding author 

 

1. INTRODUCTION 

Indoor localization has been a term of growing interest over the 

past decade as lightweight mobile devices have become the 

standard in the real world. Many user applications for these 

devices need some notion of the current position, and hence, the 

development of localization techniques is one of the keys to the 

success of pervasive computing. Thus, location-aware services 

have made it possible to use applications capable of sensing their 

location and modifying their setting and functions accordingly 

(Want, 2001). 

 

Many indoor localization approaches based on globally deployed 

radiofrequency communication systems, such as WLAN, 

Bluetooth and UWB, have been proposed, mainly because of 

their low cost and mature standardization state. In these systems, 

the fingerprinting technique is one of the most commonly used 

for indoor localization (Honkavirta, 2009). This kind of 

technique estimates positioning by matching online measured 

data with pre-measured location-related data, such as received 

signal strength (RSS). Hence, just RSS information is needed 

and extra sensors are unnecessary. Localization based on 

fingerprinting is usually carried out in two phases. In the first 

phase, normally termed offline phase, a database of the RSS 

samples is built from different base stations at each reference 

location for the target environment. Using those samples as a 

training set, a positioning model is learnt using a particular 

machine learning technique. In this phase, it can be found a great 

diversity on the applied methodologies. During the second phase, 

namely the online phase, the location is determined by means of 

new RSS measurements collected in a specific position and using 

the learnt model in the previous phase.  

 

A major drawback of fingerprinting techniques is that the key 

parameter (RSS) for predicting the position of a device is not 

stable with time due to dense indoor multipath effects, such as 

reflection, diffraction and scattering. Multipath fading causes the 

received signal to fluctuate around a mean value at a particular 

location (Kaemarungsi, 2012). Therefore, they usually deliver an 

accuracy of up to two meters, since they are hindered by 

multipath propagation. 

 

On the other hand, VLC is experiencing a growing interest 

because of improvements in solid state lighting and a high 

demand for wireless communications. Although line of sight is 

necessary for efficient communications in VLC networks, this 

kind of network infrastructure can offer a higher positioning 

accuracy mainly because of two reasons: it is not affected by 

electromagnetic interferences and the received optical power is 

more stable than radio signals, so it can be accurately determined 

(Armstrong, 2013). Therefore, fingerprinting techniques are 

expected to yield higher accuracy in VLC networks. In this 

paper, a performance analysis of different machine learning 

classifiers using RSS samples is carried out. RSS values are 

obtained using a VLC simulator that implements the IEEE 

802.15.7 standard. To be precise, six classifiers are studied, 
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namely K-Nearest Neighbour, Random Forest, C4.5, REPTree, 

KStar and LMT.  Furthermore, Boosting and Bagging techniques 

are also analysed using the previous classifiers as “weak 

learners”. Hence, seventeen classifiers are analysed in this paper. 

The analysis is carried out in terms of accuracy, average distance 

error, computational cost, training size, precision and recall 

measurements. 

 

Within the last few years, many studies on VLC based 

positioning have been published. Nevertheless, to the best of our 

knowledge, to this date there are no published indoor positioning 

research papers where a performance analysis of different 

classifiers is carried out. 

 

The rest of the paper is organized as follows. In Section 2, we 

describe our simulator that implements the IEEE 802.15.7 

standard for VLC networks. Next, in Section 3, machine learning 

classifiers used in this paper are briefly described. In Section 4, 

the test environment is defined. In Section 5, the evaluation of 

specific parameters on the performance of classifiers is shown. 

Finally, the conclusions are summed up and future works are 

presented. 

 

2. SIMULATOR DESCRIPTION 

In our research group, we have developed a simulator for IEEE 

802.15.7 networks. It was developed using OMNET++ (Omnet, 

2009) simulation framework from the model developed by 

(Chen, 2008) designed for sensor networks based on the IEEE 

802.15.4 standard, because of the similarities existing between 

IEEE 802.15.7 and IEEE 802.15.4 architectures. 

 

OMNeT++ provides built-in support tools not only for 

simulation, but also for the analysis and visualization of results. 

Several data types can be used to analyse simulation results, such 

as throughput, delay, packet loss and RSS. In this paper, the 

simulator is used to obtain RSS samples in a receiver grid 

acquired from the signal coming from different emitters (also 

called coordinators). These RSS samples are used as features for 

training the classification methods. 

 

The developed simulation model has been designed with the 

following premises:  

 

- IEEE 802.15.7 star topology has been chosen because 

of its importance and wide range of applications. 

- For the MAC layer, we opted to use the superframe 

structure; since it allows the use of both contention 

(CAP) and no contention (CFP) access methods. In 

addition, the use of the superframe enables devices to 

enter the energy save state during the idle period. 

- A VPAN identifier is assigned to each emitter to 

identify each coordinator (LED lamp).  

 

In the next subsections, the most important features in our 

simulator is described, for a better comprehension of the 

presented results. 

 

2.1 Optical channel model 

The transmission medium is modelled as free space without 

obstacles. The directed line of sight (LOS) link configuration 

was chosen to model the optical signal propagation, requiring a 

LOS between each device and the coordinator.  Only the direct 

component of the received signal was considered to calculate the 

received power, neglecting the possible influence of reflections.  

 

Frequency response of optical channel is relatively flat near 

Direct Current (DC), so the most important quantity for 

characterizing this channel is the DC gain H(0) (Kahn, 1997), 

which relates the transmitted and received optical average power, 

see Equation 1: 

 

    tPHrP  0      (1) 

 

In VLC, the received power can be expressed as the sum of LOS 

and non-LOS components. In directed LOS links, the DC gain 

can be computed accurately by considering only the direct LOS 

propagation path. According to the results presented in (Komine, 

2004), at least 90% of total received optical power is direct light 

in VLC when using a receiver field of view (FOV) of 60 degrees. 

Figure 1 shows an example of a directed LOS link. 

  

An optical source can be modelled by its position vector, a unit-

length orientation vector  transmission power Pt and a 

radiation intensity pattern I(θ,m) emitted in direction θ. Where m 

is the mode number of the radiation lobe, which specifies the 

directionality of the source, and is related to the transmitter half 

power angle θ1/2. Similarly, a receiver is defined by its position, 

orientation ,   photo detector area A, and FOV (ψc). The angle 

formed between the optical incident signal and the orientation 

vector  is called the incident angle ψ. The maximum incident 

angle defines the receiver FOV. Considering LOS propagation 

path, the DC gain can be calculated according to (Kahn, 1997) as 

Equation 2: 
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where  Ts(ψ) = optical filter signal transmission coefficient 

 G(ψ) = optical concentrator gain 

 d = distance between transmitter and receiver 

  

The adopted optical channel model facilitates reaching high 

Figure 1. Directed LOS link configuration. 
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transmission speeds, since the effects of multipath distortion on 

the optical signal are not considered. Considering only the direct 

component of the signal has the additional benefit of improving 

the efficiency of the implemented simulation model. The 

computational load required to run simulations of scenarios with 

multiple nodes including the functionality of different layers of 

the architecture is reduced significantly. 

 

To ensure the validity of our implemented model, we have 

configured all optical receivers using a 60 degrees FOV value 

(ψc). 

 

2.2 PHY layer simulation parameters 

 

Table 1 shows the main configuration parameters of PHY layer 

used in all simulation scenarios. We selected the PHY II 

operating mode, intended for both indoor and outdoor 

environments, using MCS-ID number 16, since support for the 

minimum clock and data rates for a given PHY is mandatory.  

 

Because of the optical channel model used, transmitters' 

directivity is characterized by its half power angle, θ1/2 while 

receivers' directivity is defined by its FOV. According to 

(Chvojka, 2015), both parameters are assigned a value of 60 

degrees, to ensure validity of the implemented channel model, 

since the calculation of received optical power takes into account 

only the direct component of the signal.  

 

In order to simplify the calculation process of the model, the 

values used for the concentrator gain (G(ψ)) and the transmission 

coefficient of the optical filter (Ts(ψ)) are set up as constant 

values, so they do not depend on the angle of incidence ψ. 

 

The rest of the selected values employed to characterize VLC 

transmitters and receivers are commonly used values in literature, 

similar to those used in (Chvojka, 2015)(Tronghop, 2012).   

 

 

Parameter Value 

Transmission rate 1.25 Mbps 

Optical clock rate 3.75 MHz 

Coordinator optical transmission power  (Pt) 15 W 

Half Power Angle θ1/2 60o 

Field of Vision (ψc) 60o 

Photo detector area (A) 100 mm2 

Photo detector responsivity (R) 0.54 A/W 

Optical concentrator gain ( G(ψ)) 15 

Optical filter transmission coefficient (Ts(ψ)) 1 

 

Table 1. PHY layer parameters. 

 

 

3. MACHINE LEARNING CLASSIFIERS 

In this section, a brief description of used classifiers in this paper 

is outlined.  

 

3.1 K-Nearest Neighbour 

KNN is a machine learning algorithm that predicts the 

classification of new data based on the closest training samples 

in the feature space (Cover, 1967). The algorithm decides which 

class is similar by picking the K nearest data point distances to 

the observation. Then, simple majority of neighbours is used to 

determine the class prediction. In this paper, IB1 implementation 

(Aha, 1991) of K-NN was used and the number of nearest 

neighbours was established in K=1 because this configuration 

provided better results. 

 

3.2 Random Forest 

RandomForest (RF) was proposed by Breiman (Breiman, 2001). 

Random Forest is an ensemble of decision trees such that each 

tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the 

forest. As the number of trees in the forest becomes large, the 

generalization error converges to a limit. The generalization error 

of a forest of tree classifiers depends on the strength of the 

individual trees in the forest and the correlation between them. 

The classification is done by a majority vote among the decisions 

of all trees. The randomness introduces robustness to the 

algorithm against noise and outliers. Random Forest is equally 

applicable to both classification and regression problems. In this 

paper, the number of trees was established in 100. 

 

3.3 C4.5 

C4.5 is an algorithm used to generate a decision tree 

(Quinlan,1993).  C4.5 builds decision trees from a set of training 

data using the concept of information entropy. At each node of 

the tree, C4.5 chooses the attribute of the data that most 

effectively splits its set of samples into subsets enriched in one 

class or the other. The splitting criterion is the normalized 

information gain (difference in entropy). The attribute with the 

highest normalized information gain is chosen to make the 

decision. The C4.5 algorithm then recurs onto the smaller 

sublists. In this paper, a confidence factor equals to 0.25 was 

used because better results were reached. 

 

3.4 REPTree 

Reduced Error Pruning Tree is a fast decision tree learning and it 

builds a decision tree based on the information gain (Srinivasan, 

2014). REP Tree builds a decision/regression tree using 

information gain as the splitting criterion, and prunes it using 

reduced error pruning. It only sorts values for numeric attributes 

once.  

 

3.5 LMT 

A Logistic Model Tree basically consists of a standard decision 

tree structure with logistic regression functions at the leaves 

(Landwehr, 2005), much like a model tree is a regression tree 

with regression functions at the leaves. It combines the logistic 

regression models with tree induction, and thus is an analogue of 

model trees for classification problems. As in ordinary decision 

trees, a test on one of the attributes is associated with every inner 

node. For a nominal attribute with k values, the node has k child 

nodes, and instances are sorted down one of the k branches 

depending on their value of that attribute. For numeric attributes, 

the node has two child nodes and the test consists of comparing 

the attribute value to a threshold: an instance is sorted down the 

left branch if its value for that attribute is smaller than the 

threshold and sorted down the right branch otherwise. 
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3.6 KStar 

K* is an instance-based classifier, that is the class of a test 

instance is based upon the class of those training instances 

similar to it, as determined by some similarity function. It differs 

from other instance-based learners in that it uses an entropy-

based distance function. (Cleary, 1995). 

 

3.7 Boosting 

The boosting method is a technique to improve the classification 

accuracy of tree based classifiers. The idea of boosting is to 

combine the prediction of many base or weak classifiers to form 

a powerful classifier. AdaBoost is the most popular boosting 

algorithm used for classification (Freund, 1996). It is an adaptive 

and iterative algorithm that combines base models of the same 

type, such as a C4.5 decision tree, in such a way that each new 

base model is influenced by the performance of those base 

models built in previous iterations. In this paper, we use all 

aforementioned classifiers as base model, except the K-NN 

classifier because boosting is not possible with K=1. The 

algorithm was iterated 10 times. 

 

3.8 Bagging 

Bagging (Bootstrap Aggregating) was proposed by Breiman 

(Breiman, 1996) to improve the classification by combining 

classifications of randomly generated training sets. By increasing 

the size of the training set the model predictive force cannot be 

improved, but just decrease the variance, narrowly tuning the 

prediction to expected outcome. It also helps to avoid overfitting. 

Although it is usually applied to decision tree methods, it can be 

used with any type of method. In this paper, we use all 

aforementioned classifiers as base model. The algorithm was 

iterated 10 times. 

 

 

4. TEST ENVIRONMENT 

In this section, we describe the test environment used to evaluate 

the performance of machine learning classifiers described in 

Section 3. The simulation environment configured in our IEEE 

802.15.7 simulator models a 4 by 4 by 3 metres room. The 

scenario is shown in Figure 2. This environment consists of 16 

coordinators or LED lamps (red triangles), configured as a 4 x 4 

grid placed 1 meter apart from each other on the ceiling. On the 

lower part, we set up 100 receivers (blue circles) in a 10 x 10 

grid configuration, with a 36 centimetres separation from each 

other. In order to evaluate the effects of having different 

distances between receivers and coordinators, the receivers plane 

is set up at three different heights: 75, 100 and 125 centimetres 

from the floor. Receivers orientation was randomly assigned for 

each simulation as follows: they are pointing out to the ceiling 

with an initial orientation vector [0,0,1] and a random offset (-

0.2,0.2) is applied to each axis in each simulation. Thus, each 

receiver has a different orientation in each simulation. 

 

Eleven simulations were performed on each one of three 

aforementioned receiver planes. One RSS measurement from 

each LED lamp was estimated at each receiver in every 

simulation. This leads to 3,300 (11 samples x 3 layers x 100 

receivers) RSS measurements from each LED lamp. Hence, the 

dataset is finally composed of 3,300 instances, where each 

instance stores the RSS samples from each LED lamp estimated 

in a receiver. Figure 3 shows the received optical power (lux) at 1 

metre from the floor with sixteen coordinators. It shows that 

there is enough lighting to receive the beacon frame in every 

reference location. The simulation parameters were specified in 

Table 1. 

 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to evaluate the performance of the machine learning 

classifiers on VLC networks, the WEKA machine learning tool 

(Hall, 2009) was used. Weka is an open source collection of 

machine learning algorithms for data mining tasks, more 

specifically data pre-processing, clustering, classification, 

regression, visualization and feature selection. 

 

Experiments were focused onto comparing accuracy, error 

distance, computation time, training size, precision and recall 

measurements by different classifiers. The error is the expected 

distance from the misclassified instance (estimated receiver) and 

the real location (real receiver). The error is calculated by the 

Euclidean distance between these points, and the arithmetic mean 

was computed from the results of the experiments. Being a 

Figure 2. Scenario with 16 LED lamps and 100 receivers. Figure 3. Distribution of the received optical power at 1 

metre from the floor. 
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classification problem, an error simply means that a receiver was 

estimated to be in a wrong positioning cell, in the receiver’s grid. 

All experiments were carried out on an Intel Core i7 3.4 GHz/32 

GB RAM non-dedicated Windows machine. 

 

5.1 Accuracy of classifiers and computational cost 

In this section, the performance of classifiers is analysed. For the 

validity of experimental results, the experiments were carried out 

using 10-fold cross-validation.  

 

Table 2 shows the accuracy, error distance and the time to build 

the analysed classifiers, that is, training time. As can be seen, all 

classifiers have an accuracy above 90%, except REPTree 

algorithm. K-NN classifier obtains the best result, yielding a 

99.0% accuracy, with an average error distance of 0.3 

centimetres, 6 times less than the next best classifier, KStar. 

Furthermore, K-NN algorithm is the fastest to build the 

classifier. 

 

On the other hand, Boosting and Bagging techniques outperform 

the performance of base classifiers C4.5, REPTree and LMT, but 

at the expense of much higher computation effort. Furthermore, 

it is noticed that Boosting techniques are slightly more accurate 

than Bagging techniques. 

 

Figure 4 shows the cumulative distribution function (CDF) for 

the best analysed classifiers, that is, K-NN, Random Forest, 

Adaboost C45, AdaBoost RepTree, KStar and AdaBoost LMT. 

As can be seen, most of the test instances are correctly classified, 

and most of the misclassified instances are about 36 centimetres, 

that is, these instances are the nearest neighbours (receivers) of 

exact locations in the same height. On the other hand, the 

maximum error of K-NN and KStar classifiers is about 50 

centimetres. 

 

 

 

Table 2. Performance of classifiers. 

 

 

 

 

5.2 Analysis of Training Dataset size 

The training dataset size is an important parameter for the 

performance and the building time of each model based on 

decision trees. A large-sized training dataset can provide better 

accuracy to predict the correct location, but too much data can 

increase the elapsed time to build the model considerably. The 

aim is to reduce as much as possible the training phase achieving 

a minimal impact on the performance. In order to test the 

robustness of the method, different training dataset sizes were 

used, from 20% to 80% of the whole dataset. For the validity of 

experimental results, the experiments were performed 100 times, 

each time selecting the training and testing data after 

randomizing the instances order, picking the same proportion of 

samples at each class (stratified split).  

 

Table 3 shows the experimental results for different training 

sizes for the best classifiers in the previous section, except 

AdaBoost LMT, which is replaced by LMT because this latter 

has similar accuracy and a considerably lower computational 

cost. As can be seen, the performance of analysed algorithms 

varies on training set size, and the accuracy improves with larger 

training datasets. Furthermore, an error distance below 10 

centimetres is yielded using a 60% training size for all classifiers. 

Although a similar value of accuracy is obtained with only a 20% 

training dataset size when using K-NN algorithm. This error 

distance may be enough for some location based applications. 

Regarding the training time, it should be noted that the Random 

Forest, LMT and Boosting based classifiers take more 

computation time than K-NN and KStar algorithms, at least 500-

times worse using a 60% training size. 

 

Precision and recall measures have been also evaluated with 

training size. Figures 5 and 6 show the precision and recall 

measures, respectively. As can be seen, results for both measures 

follow a similar trend compared with accuracy, that is, they 

increase when the training size does, yielding the K-NN classifier 

the best results with both values close to 0.99 using an 80% of 

training size. 

 

Classifier 
Accuracy 

(%) 

Error 

Distance 

(cm) 

Training 

Time (s) 

K-NN 99.00 0.3 0.02 

Random Forest 95.33 2.1 9.08 

C.45 91.06 6.7 0.30 

REPTree 85.84 12.2 0.32 

KStar 97.21 1.8 0.02 

LMT 96.30 4.4 167.10 

AdaBoost RF 95.12 2.1 8.77 

AdaBoost C4.5 95.18 2.2 7.43 

AdaBoost 

REPTree 

95.21 3.5 6.99 

AdaBoost KStar 96.84 2.3 2313.39 

AdaBoost LMT 96.36 3.3 1527.98 

Bagging K-NN 98.61 0.5 0.03 

Bagging RF 94.66 2.3 64.57 

Bagging C4.5 94.54 3 1.93 

Bagging REPTree 93.24 3.7 2.28 

Bagging KStar 96.57 2.3 0.02 

Bagging LMT 95.97 3.8 1677.94 

Figure 4. CDF of performance for the best analysed 

classifiers. 
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6. CONCLUSIONS 

In this paper, we have analysed the performance of different 

machine learning classifiers for indoor localization in VLC 

networks. Accuracy, error distance, computational cost, training 

size, precision and recall measurements were evaluated.  

 

Regarding accuracy, most of the analysed classifiers yielded 

excellent results, above 90% accuracy. This is mainly because 

the visible light is less susceptible to multipath effects making 

the propagation and the received optical power more predictable. 

The best classifier (K-NN) yielded a 99.0% of instances correctly 

classified and average error distance of only 0.3 centimetres. 

Also, this classifier was the best performer in terms of precision 

and recall measurements even for smaller training sets. In 

addition, the training time spent to build the classifier is the 

lowest, about 20 milliseconds. On the other hand, the accuracy, 

precision and recall measurements improve when training dataset 

size increases, although it needs higher computation effort. 

Furthermore, the error distance is less than 10 centimetres using 

only a 60% training dataset size for all classifiers. Hence, it 

demonstrates that VLC networks may be used for indoor 

localization based applications with high accuracy constraints. 

 

Since the average error distance of misclassified instances cannot 

be less than the distance among receivers when classifiers are 

used, in our ongoing work, we are planning to use other 

techniques of data mining, such as regression, to reduce the error 

distance. Moreover, we are also planning to use principal 

component analysis to reduce the data dimensionality, and hence, 

the computation time to build the model could be reduced and the 

system accuracy could be improved. 
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Classifier 
Training 

Size (%) 

Accuracy 

(%)  

Error 

Distance 

(cm) 

Training 

Time (s) 

K-NN 

20 76.72 10.9 0.01 

40 92.13 2.9 0.01 

60 96.44 1.3 0.01 

80 98.15 0.6 0.01 

Random 

Forest 

20 63.15 34.1 2.02 

40 82.94 10.7 3.85 

60 90.19 4.8 5.56 

80 93.31 2.8 7.31 

AdaBoost 

C4.5 

20 57.16 41.7 1.68 

40 81.28 13.9 3.46 

60 89.81 6 5.06 

80 93.42 3.4 6.55 

AdaBoost 

REPTree 

20 23.08 84.2 0.30 

40 80.85 14.8 3.11 

60 89.83 6.3 4.83 

80 93.62 3.5 6.44 

KStar 

20 63.75 36.6 0.01 

40 83.19 14.9 0.01 

60 91.56 6.7 0.01 

80 95.54 3.2 0.01 

LMT 

20 55.35 48.1 20.58 

40 79.95 20.2 58.48 

60 90.15 8.8 98.70 

80 94.24 5.3 136.87 

 

Table 3. Performance with different training sizes. 
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