Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42493
Título: | Bayesian robustness in meta-analysis for studies with zero responses | Autores/as: | Vázquez Polo, Francisco José Moreno, E. Negrín, M. A. Martel, M. |
Clasificación UNESCO: | 530204 Estadística económica | Palabras clave: | Bayesian inference Noninformative priors Sarmanov and intrinsic link distribution Testing on meta-parameters |
Fecha de publicación: | 2016 | Proyectos: | Nuevos Desarrollos en Métodos Cuantitativos Bayesianos. Aplicaciónes en Evaluación Económica de Tratamientos Mediante Meta-Análisis y Medición de Riesgos Con Datos Actuariales MTM2011–28945 |
Publicación seriada: | Pharmaceutical Statistics | Resumen: | Statistical meta-analysis is mostly carried out with the help of the random effect normal model, including the case of discrete random variables. We argue that the normal approximation is not always able to adequately capture the underlying uncertainty of the original discrete data. Furthermore, when we examine the influence of the prior distributions considered, in the presence of rare events, the results from this approximation can be very poor. In order to assess the robustness of the quantities of interest in meta-analysis with respect to the choice of priors, this paper proposes an alternative Bayesian model for binomial random variables with several zero responses. Particular attention is paid to the coherence between the prior distributions of the study model parameters and the meta-parameter. Thus, our method introduces a simple way to examine the sensitivity of these quantities to the structure dependence selected for study. For illustrative purposes, an example with real data is analysed, using the proposed Bayesian meta-analysis model for binomial sparse data. | URI: | http://hdl.handle.net/10553/42493 | ISSN: | 1539-1604 | DOI: | 10.1002/pst.1741 | Fuente: | Pharmaceutical Statistics[ISSN 1539-1604],v. 15(3), p. 230-237 |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 17-nov-2024
Visitas
106
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.