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Bayesian robustness in meta-analysis for
studies with zero responses
F. J. Vázquez,a* E. Moreno,b M. A. Negrín,a and M. Martela

Statistical meta-analysis is mostly carried out with the help of the random effect normal model, including the case of discrete
random variables. We argue that the normal approximation is not always able to adequately capture the underlying uncer-
tainty of the original discrete data. Furthermore, when we examine the influence of the prior distributions considered, in the
presence of rare events, the results from this approximation can be very poor. In order to assess the robustness of the quan-
tities of interest in meta-analysis with respect to the choice of priors, this paper proposes an alternative Bayesian model for
binomial random variables with several zero responses. Particular attention is paid to the coherence between the prior distri-
butions of the study model parameters and the meta-parameter. Thus, our method introduces a simple way to examine the
sensitivity of these quantities to the structure dependence selected for study. For illustrative purposes, an example with real
data is analysed, using the proposed Bayesian meta-analysis model for binomial sparse data. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Clinical trials for medical treatments conducted in different
centres/studies provide heterogeneous sample information that
needs to be combined. In the last few decades, the number of clin-
ical trials, concerning an enormous variety of medical treatments,
has risen exponentially, and methodologies have had to be devel-
oped to combine the sample information from disparate clinical
trials. Meta-analysis is the statistical procedure to bring together
heterogenous studies of a medical treatment for a single disease,
to determine what can fairly be concluded about the fundamen-
tal question that each study seeks to address: the effectiveness of
the treatment.

Among the most widely used methods in practice are those
termed ‘random effects’. The frequentist random effect model
is based on the DerSimonian–Laird estimator [1], but the latter
does present serious concerns, and alternative procedures have
been proposed ([2–4], among many others). On the other hand,
Bayesian random effects models, among many other advantages,
are very suitable when data are sparse and the number of studies
presented is small [5].

Following Sutton and Abrams [6], the Bayesian random effects
model for meta-analyses can be accommodated to the following
hierarchical model:

xi � N
�
�i , �

2
i

�
i D 1, : : : , k

�i � N
�
� , �2

�
,

� � Œ�,�� �2 � Œ�,��,

(1)

where, for each study, i 2 f1, ..., kg and the observed effect
xi is assumed to be normally distributed with parameters �i

and �2
i , where �i represents the treatment effectiveness condi-

tional on study i and �2
i its variance. Similarly, � represents the

unconditional treatment effectiveness, that is, the pooled effect
size and �2 its variance, and Œ�,�� indicates a prior density to
be assigned.

Thus, the assignment of prior densities in meta-analyses con-
stitutes a source of uncertainty, and it is important to develop
straightforward methods to analyse the problem of expressing
uncertainty regarding prior information. Different prior densities
can be used, generating varying results; consequently, there is
no definitive analysis, and a sensitivity analysis is always required
[6]. The problem is aggravated in the case of rare events, that
is, binary outcomes with a high frequency of occurrence of zero
responses [7].

The Cochrane Collaboration recently considered the case of
adverse events. Data on adverse effects tend to be sparse, and this
is a clinical area where specific meta-analytical techniques need
to be investigated in depth [8]. Sweeting et al. [9] pointed out that
in the presence of rare events, the results obtained from the com-
monly used hierarchical normal model in (1) can be very poor,
while the logit approach ([10–12], among many others) does not
always adequately reflect the underlying uncertainty of the origi-
nal discrete data when proportions are small. In this respect, too,
Bradburn et al. [13] found that alternative procedures correcting
the lack of continuity and relaxing the assumption of normal-
ity (DerSimonian and Laird, Mantel–Haenszel, inverse variance
or Peto methods, among others) were also biassed when data
were sparse.
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Very few papers have specifically examined the question of
Bayesian robustness with respect to priors in meta-analysis, and
those who have considered this topic have mostly studied a
catalogue of distributions containing a small finite number of
proposed vague priors and then examined the behaviour of the
quantities of interest over the finite family of priors considered [7].
Lambert et al. [5] conducted a simulation study based on several
different vague priors and reported that in meta-analysis with a
small number of studies, ‘the choice of vague prior distribution
can lead to a marked variation in results’. With respect to previ-
ous studies, we address the problem of sensitivity from a different
standpoint. It is now known that robust Bayesian methodology
can be used to study how a given model reacts to deviations of
some inputs, usually related to the prior distribution. Thus, we can
measure the model’s reaction to doubts in the expert’s opinion by
considering a family � of plausible priors. It is then of interest to
examine how the relativities for priors in such a class behave.

In the present study, we proceed step by step to develop an
alternative Bayesian model with a real conceptual improvement
in its assumptions. First, we present an objective Bayesian model
for meta-analysis with sparse binomial random variables, in order
to overcome the concerns detected in the usual logit transformed
methods for meta-analysis. The binomial sampling models are
complemented with well-established default or ‘automatic’ prior
distributions for �i and � . Second, to complement the Bayesian
model for meta-analysis, we have to choose the link distribu-
tion between �i and � . This is a key point in Bayesian analysis
and one that has received little attention in the literature. Finally,
we derive a simple relationship between the commonly used
between-study variance and the variance of the proposed link-
ing distribution, which allows us to introduce a class of plausible
priors in order to study the Bayesian sensitivity of the model in a
rigorous and simple way and also facilitates implementation.

The rest of this paper is structured as follows. Section 2 presents
the Bayesian model for binomial sparse data. This model requires
us to derive the distributions linking the parameter �i of the
binomial distribution in the ith study and the meta-parameter
� . The posterior distributions of � and the meta-predictive dis-
tribution of the meta-variable x are then calculated. In Section
3, the Bayesian procedure for testing common hypotheses in
meta-analysis is developed. Once the elements of this new model
have been established, Section 4 then describes an improved way
to study the sensitivity of the choice of priors in meta-analysis.
In Section 5, the Bayesian meta-analysis procedure is applied to
sparse real data sets from [14] and [15]. Finally, Section 6 contains
some concluding remarks.

2. AN ALTERNATIVE OBJECTIVE BAYESIAN
MODEL FOR BINOMIAL SPARSE DATA

In this section, we present an alternative model for the case of
sparse count data, adopting the standpoint of the Bayesian model
choice methodology [16]. Let us consider the Bayesian model for
the observational study i in a collection of k studies, given by

Mi :
n

Bin.xijni , �i/, �
J.�i/ D Beta.�ij1=2, 1=2/

o
, i D 1, : : : , k,

(2)

where the outcome variable xi is a binomial response variable tak-
ing a value between 0 and ni , where ni is the number of patients
in study i. We assume that the prior information on the �i ’s is
weak and, hence, the prior distribution �J.�i/ is the objective

Jeffreys’ prior beta distribution Beta.�ij1=2, 1=2/, this being one
of the most commonly used forms as a non-informative prior
distribution when non-elicited hyperparameters are required.

Then, a meta-model is directly induced by models for obser-
vational studies. The latent meta-variable x means the result we
would obtain when a treatment is applied to a patient in a virtual
centre that does not suffer of the random heterogeneity between
studies effect. This meta-variable is a way of modelling those sit-
uations where we deal with heterogenous samples. That is, the
Bayesian meta-model M0 for the 0 � 1 unobservable treatment
effectiveness x is given by

M0 :
n

Ber.xj�/, � J.�/
o

, (3)

where the meta-parameter � represents the unconditional prob-
ability of success of the treatment, Ber.xj�/ D �x.1� �/1�x is the
Bernoulli distribution and�J.�/ is the Jeffreys prior for � . The con-
sideration of the meta-model is important because the predictive
distribution of x gives us the consequences for a new patient
under the treatment whatever is the centre [17].

To carry out any posterior inference on the meta-parameter
� , its posterior distribution must be computed, and following
the natural structure of random effects models in (1), we need a
linking distribution between �i and � .

2.1. Linking the experimental parameter �i
with the meta-parameter �

We argue that because the marginals of �i and � are given, the
bivariate distribution �.�i , �/must be chosen in the Fréchet class
of bivariate distributions with given marginals. This is a large and
well-studied class for which a considerable body of literature has
been developed to reduce the class to subclasses, called copulas,
that model particular dependence structures between �i and �
[18]. Properties of the copulas that are typically analysed are their
lower and upper bounds and the range of correlation coefficients
between �i and � .

We follow the same strategy and consider classes of bidimen-
sional distributions with given marginals. For obvious reasons, we
only consider positive correlations between �i and � . Mathemati-
cally, we are looking for a bivariate distribution �.�i , �/ such that
the integral equations

Z 1

0
�.�i , �/d�i D �.�/,

Z 1

0
�.�i , �/d� D �.�i/ (4)

hold for given �.�/ and �.�i/.

2.2. The case of Jeffreys marginals

Let us now consider a meta-analysis with Jeffreys marginal
prior distributions for �i and � . If the Jeffreys priors �J.�i/

and �J.�/ are used in (4), a family of distributions that is well
adapted to our problem and easy to handle is the one described
by Sarmanov [19],

�SJ.�i , � j˛/ D
1

�2
.�.1 � �//�1=2.�i.1 � �i//

�1=2

�
�

1C
˛

4
.2�i � 1/.2� � 1/

�
,

(5)

for 0 6 ˛ 6 4. To make explicit the dependency on the Jeffreys
prior, we call this the Sarmanov–Jeffreys family. Interestingly, very
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few papers in meta-analysis make use of the Sarmanov family,
although in other scenarios, [20] and [21] are exceptions to this.

By construction, this family
˚
�SJ.�i , � j˛/, 0 6 ˛ 6 4

�
is

such thatZ 1

0
�SJ.�i , � j˛/d�i D �

J.�/,

Z 1

0
�SJ.�i , � j˛/d� D �

J.�i/

for any 0 6 ˛ 6 4. Furthermore, the Pearson’s correlation

coefficient of �i and � is given by �SJ.�i , � j˛/ D
˛

8
, and hence,

0 6 �SJ.�i , � j˛/ 6
1

2
.

Also, the conditional variance is obtained by

V
SJ.�ij� ,˛/ D

32 � ˛2.2� � 1/2

256
. (6)

Therefore, we observe that there is a relationship between the
variance and the Pearson’s correlation coefficient, which can help
the practitioner model the heterogeneity.

Following Moreno et al. [16], we need to enlarge this family in
order to account for correlations of over 1=2. For this purpose, the
Intrinsic–Jeffreys (IJ) class is well-suited. It is obtained by applying
the intrinsic methodology to the Jeffreys prior and is given by

� IJ.�i , � jt/ D
1

�

tX
zD0

 
t

z

!
.�i�/

z�1=2Œ.1 � �i/.1 � �/�t�z�1=2

B.zC 1=2, t � zC 1=2/
, (7)

where t D 1, 2, : : : , and B.a, b/ is the beta function. Given t,
each bidimensional intrinsic distribution in (7) is a beta-binomial
mixture, and by integrating out with respect to either �i

or � , we can easily obtain the Jeffreys marginal distribu-
tions. Furthermore, the between-study heterogeneity captured
by the class

˚
� IJ.�i , � jt/, t D 1, 2, : : :

�
is considered by the

conditional variance

V
IJ.�ij� , t/ D

.1C 2t/.1 � 4t�.� � 1//

4.tC 1/2.tC 2/
(8)

and the correlation coefficient

�IJ D
t

tC 1
, t D 1, 2, : : : . (9)

Observe that 1=2 6 �IJ 6 1 is an increasing function of t, as t
ranges in f1, 2, : : :g. Equivalently, the variance in (8) is a decreasing
function of �, for any � .

2.3. Linking distributions

When the marginal densities of �i and � are Jeffreys as in (5),
we note that the value ˛ D 0, in the Sarmanov–Jeffreys case,
models independence between �i and � , a situation that is of no
interest in meta-analysis. This suggests we should integrate out
˛ in the family with respect to a hyperprior �.˛/ that penalises
independence between �i and � .

A natural hyperprior for ˛ 2 Œ0, 4� is a transformed Beta.˛ja, b/,
that is, �.˛/ / ˛a�1.4 � ˛/b�1. An appropriate assignment of
the parameters a and b may help us ‘penalise’ unwanted sce-
narios of independence and favour more realistic situations. A
particular choice of the hyperparameters a and b yields a beta
J-shaped distribution with a left tail. The case a > 2, b D 1 is
particularly well adjusted to the aforementioned comments; this
case coincides with a convex power density function in which the
mode is at 4. Furthermore, in order to model departures from the
independence scenario more smoothly, we can consider beta dis-
tributions with 1 6 a 6 2 and b D 1. Members of this selected
beta family are the usual vague uniform prior, left skewed distri-
butions and left skewed triangle distributions as a varies from 1
to 2, respectively.

The full Bayes Sarmanov–Jeffreys linking distribution derived
by integrating out ˛ with a transformed Beta.˛ja, b D 1/ is
obtained as follows:

�SJ.�ij�/ D
1

�
�
�1=2
i .1� �i/

�1=2
�

1C
a

aC 1
.2�i � 1/.2� � 1/

�
.

(10)

Analogously, a natural hyperprior for � 2 Œ1=2, 1� is an inverted
J-shaped beta distribution with a right tail by which unrealistic
high-correlation scenarios are penalised and the usual uninfor-
mative uniform prior could be included. A beta distribution with
parameters a D 1 and b is then selected, and the corresponding
discrete distribution induced on t is given by

�.t/ D

�
2

tC 1

�b

�

�
2

tC 2

�b

, t D 1, 2, : : : . (11)

The full Bayes Intrinsic–Jeffreys linking distribution derived by
integrating out t in (7) with respect to prior (11) is obtained
as follows:

� IJ.�ij�/ D

1X
tD1

 (�
2

tC 1

�b

�

�
2

tC 2

�b
) 

tX
zD0

Beta.�ij���/ � Bin.� jt, z/

!!
, (12)

where ��� D .z C 1=2, t � z C 1=2/ and Beta.�jr, s/ and Bin.�jn, m/
are the pdf and pmf of the beta and binomial distributions,
respectively.

2.4. Likelihood and posterior distribution of the
meta-parameter

Assuming that the samples fxi , i D 1, : : : , kg are independent,
conditional on �i , the probability distribution of the whole data
sets .xxx, nnn/ D f.xi , ni/, i D 1, 2, : : : , kg for a specific link distribution
�.�ij�/ is obtained as

Pr.xxxjnnn, �/ D
kY

iD1

Z 1

0

 
ni

xi

!
�

xi
i .1 � �i/

ni�xi�.�ij�/d�i .

This is the likelihood of � for the data sets .xxx, nnn/. Thus, after
some tedious algebra, for the Sarmanov–Jeffreys �SJ.�ij�/, the
likelihood is2

3
2
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Pr SJ.xxxjnnn, �/ D
kY

iD1

(
1

�

�
�

xiC
1
2

�
�
�

ni � xiC
1
2

�
� .xiC1/ � .ni � xi C1/

�
1�

a.2� � 1/

aC 1

�

C
2a

�.aC 1/

2� � 1

ni C 1

�
�

xi C
3
2

�
�
�

ni � xi C
1
2

�
� .xi C 1/ � .ni � xi C 1/

)
.

(13)

The likelihood of � for the Intrinsic–Jeffreys link distribution is

Pr IJ.xxxjnnn, �/ D
kY

iD1

 
ni

xi

!
1X

tD1

 �
2

tC 1

�b

�

�
2

tC 2

�b
!
.1 � �/t

�
B.xi C 1=2, ni C t � xi C 1=2/

B.tC 1=2, 1=2/
3ŒF2

�
ııı,			,

�

� � 1

�
,

(14)

where 3F2

�
ııı,			, �

��1

�
denotes the generalised hypergeometric

function with ııı D .1=2 � t,�t, 1=2C xi/ and 			 D .1=2, 1=2 � t �
ni C xi/.

Finally, assuming that the links under the Jeffreys marginals are
a priori equally likely, the likelihood of � is given by

Pr.xxxjnnn, �/ D
1

2
Pr SJ.xxxjnnn, �/C

1

2
Pr IJ.xxxjnnn, �/. (15)

Consequently, the posterior probability of � for the Jeffreys
prior for � is given by

�J.� jnnn, xxx/ D
��1=2.1 � �/�1=2 Pr.xxxjnnn, �/R 1

0 �
�1=2.1 � �/�1=2 Pr.xxxjnnn, �/d�

. (16)

3. HYPOTHESIS TESTING: TESTING THE
EQUALITY OF TREATMENT EFFECTIVENESS

Standard methodologies (classical and Bayesian) typically address
this problem as an estimation problem addressing either the dif-
ference of the meta-effectiveness treatment parameters or the
odds ratio (OR). The accept/reject criterion consists of whether
the corresponding credible interval contains or does not contain
the singular value 0 (similarly, the value 1 for the case of the OR).
However, it is well established [22] that testing problems could be
addressed using Bayes factors.

Then, assuming that we are interested in testing the equal-
ity of the meta-effectiveness of two treatments T1 and T2, given
the samples .x1x1x1, n1n1n1/ and .x2x2x2, n2n2n2/ of the treatment effectiveness
reported in k studies.

Let fPr.x1x1x1jn1n1n1, 
/, �.
/g and fPr.x2x2x2jn2n2n2, �/, �.�/g be the likeli-
hoods and priors of the meta-effectiveness 
 and � of treatments
T1 and T2, respectively. Testing the null H0 : 
 D � versus the unre-
stricted alternative H1 : .
, �/ is equivalent to the model selection
problem between the Bayesian models M0 and M1 given by

M0 :
n

Pr.x1x1x1jn1n1n1, �/ Pr.x2x2x2jn2n2n2, �/, �J.�/
o

and

M1 :
n

Pr.x1x1x1jn1n1n1, 
/ Pr.x2x2x2jn2n2n2, �/, �J.
/�J.�/
o

.

The model selector is usually taken as the posterior probability
of the null model M0. Assuming that a priori Pr.M0/ D Pr.M1/ D

1=2, the posterior probability of M0 is given by

Pr.M0jx1x1x1, n1n1n1, x2x2x2, n2n2n2/ D
1

1C B10
, (17)

where B10, the Bayes factor to compare M1 with M0, is given by

B10.x1x1x1, n1n1n1, x2x2x2, n2n2n2/D
m1.x1x1x1, n1n1n1, x2x2x2, n2n2n2/

m0.x1x1x1, n1n1n1, x2x2x2, n2n2n2/

D

R 1
0

R 1
0 Pr.x1x1x1jn1n1n1, 
/ Pr.x2x2x2jn2n2n2, �/� J.
/� J.�/d
d�R 1

0 Pr.x1x1x1jn1n1n1, �/ Pr.x2x2x2jn2n2n2, �/� J.�/d�
.

The meaning of B10.x1x1x1, n1n1n1, x2x2x2, n2n2n2/ is the ratio of the likelihood
of model M1 and model M0 for the data .x1x1x1, n1n1n1, x2x2x2, n2n2n2/. The opti-
mal decision of this model selection problem is, under the 0 � 1
loss function, to reject the null H0 iff Pr.M0jx1x1x1, n1n1n1, x2x2x2, n2n2n2/ < 1=2 or
equivalently to reject the null iff B10.x1x1x1, x2x2x2/ > 1.

We note that the aforementioned decision is taken condi-
tional on the data f.xixixi , ninini/, i D 1, 2g. Furthermore, we note that
Pr.M0jx1x1x1, n1n1n1, x2x2x2, n2n2n2/ depends explicitly on the prior �.�/ and
implicitly on the link between �i and � utilised to construct the
likelihoods Pr.x1x1x1jn1n1n1, 
/ and Pr.x2x2x2jn2n2n2, �/.

4. A WAY TO STUDY BAYESIAN ROBUSTNESS

As commented earlier, the few papers that have examined robust-
ness with respect to priors in meta-analysis are mainly based on
the study of a finite set of priors (frequently, no more than 10), and
then examining the behaviour of some quantities of interest over
this catalogue of distributions [5,7]. This empirical approach can
be improved using a Bayesian robust philosophy.

Let us now observe that the use of the family of
Sarmanov–Jeffreys priors introduces an easily handled relation-
ship between the correlation coefficient �, the hyperparameter
˛ (using (6)) and the between-study heterogeneity measured
through the variance

V
SJ.�ij� , �/ D

1

8

�
1 � 2�2.2� � 1/2

�
or

V
SJ.�ij� ,˛/ D

32 � ˛2.2� � 1/2

256
.

Analogously, we find in the Intrinsic–Jeffreys family the follow-
ing relationship:

V
IJ.�ij� , �/ D

.� � 1/2.�C 1/.�.1 � 2�/2 � 1/

4�.� � 2/

or

V
IJ.�ij� , t/ D

.1C 2t/.1 � 4t�.� � 1//

4.tC 1/2.tC 2/
.

According to Bayesian robustness analysis, the prior on the vari-
ance can be modelled by specifying a class � of priors instead of
a single prior. An alternative way to do this consists in introducing
a class of plausible priors on the hyperparameters ˛ and t. Given
that the Sarmanov/Intrinsic–Jeffreys class is well adapted, this is
equivalent to choosing plausible ranges of values for the a and b
parameters in the link distributions in (10) and (12).

Two further aspects characterise the problem described: on the
one hand, the measure by which the sensitivity is evaluated is
determined by the self-same structure of the problem, which in
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this case is, in practice, point estimates, the predictive effective-
ness distribution and/or the probability of equality of treatment
effectiveness. Furthermore, the a priori class of possible distribu-
tions must embody a certain defensible, ‘familiar’ character for
the practitioner. In this sense, the classes of transformed beta
distributions given in Subsection 2.3 are presented as plausible
alternatives. As commented earlier, this class penalises unrealis-
tic independence situations and presents more realistic scenarios
when a left tail is expected:

�a D fBeta.a, 1/ j a > 1g . (18)

Similarly, for larger values of correlation � > 1=2 where the
Intrinsic–Jeffreys family works well for the class of beta distribu-
tions with parameters a D 1 and b > 1, it seems appropriate to
conduct a Bayesian robustness study:

�b D fBeta.1, b/ j b > 1g . (19)

The inference is assumed to be robust if the posterior quanti-
ties of interest do not change excessively over the class of priors
selected. For instance, in testing the equality of effectiveness of
two treatments, a robust Bayesian analysis of Pr.M0jdata/ over
class �a,b D �a C �b can of course be performed by simply
computing the interval

I D
 

inf
a,b>1

Pr.M0jdata, a, b/, sup
a,b>1

Pr.M0jdata, a, b/

!
, (20)

where the smaller the length of the interval I , the larger the
robustness of the posterior probability of equality with respect to
�a,b. We denote by �a C �b to refer jointly to a prior from class
�a and one from �b. Observe that the same is applied when we
are interested in measuring the sensitivity of other measures of
interest: effectiveness and OR, among many others.

As a measure of sensitivity (or its absence), we use the following
useful adapted index [23]:

Sa,b D
U � L

2 �  a,b
� 100%,

where U and L are the upper and lower bounds of the expected
(posterior) effectiveness over the class of priors �a,b and  a,b is
the expected (posterior) effect when base priors�a and�b in class
�a,b are considered. Index S has a very simple interpretation and
can be thought of as the percentage variation of effects around a
particular selected prior, as the prior varies in �a,b. A ‘small’ value
of S reflects robustness with respect to a particular base prior
selected, and then the practitioner will have few doubts concern-
ing the effects obtained from the ‘true’ base prior. On the other
hand, a ‘large’ value of S is an indication that additional refine-
ment of the priors is needed. Similar comments could be applied
when other quantities of interest are used, for instance, the OR
and the probability of equality of treatment effects.

5. AN EXAMPLE WITH REAL DATA

As an illustration of the aforementioned considerations, we
present the analysis of a real data set extracted from [14], cor-
responding to the use of a diuretic administered to women at
risk of preeclampsia. This case study is frequently used to present
classical procedures for estimating a common treatment effect

in a heterogeneous sample. Cornell et al. [15] also presented the
Bayesian fixed and random effects for estimating and comparing
the results.

Example 1
We consider data from nine Randomised Controlled Trials (RCTs)
provided in [14]. Two treatments were considered, termed
‘treatment group’ and ‘control group’, respectively.

The numbers of patients ‘treated’ in the nine studies were n1n1n1 D

{131, 335, 57, 34, 1011, 1370, 506, 108, 153} and the numbers of
observed perinatal deaths x1x1x1 D {1, 6, 3, 1, 14, 24, 14, 0, 0}. Like-
wise, the numbers of patients in the control group were n2n2n2 D

{136, 110, 48, 40, 760, 1336, 524, 103, 102}, and the numbers of
perinatal deaths observed were x2x2x2 D {4, 3, 2, 3, 13, 19, 16, 0, 0}.
The data set also presented stillbirths and neonatal deaths during
the first month (in practice, in such trials, the perinatal mortal-
ity outcome is considered as ‘stillbirths’C ‘neonatal deaths’). The
data for these two outcomes were nS

1nS
1nS
1 D nN

1nN
1nN
1 D {131, 335, 57, 34,

1011, 506, 108, 153}, and xS
1xS
1xS
1 D {1, 3, 1, 0, 6, 6, 0, 0}, xN

1xN
1xN
1 D {0, 3,

2, 1, 8, 8, 0, 0}; and nS
2nS
2nS
2 D nN

2nN
2nN
2 D {136, 110, 48, 40, 760, 524, 103,

102}, and xS
2xS
2xS
2 D {2, 2, 1, 1, 5, 9, 0, 0}, and xN

2xN
2xN
2 D {2, 1, 1, 2, 8, 7, 0, 0},

for stillbirths (superscript S) and neonatal deaths (superscript N),
respectively. Observe that this last set of data only contains eight
RCT studies because one of them only presented aggregated data
for perinatal mortality.

A robustness Bayesian analysis with respect to the class of
transformed beta priors for parameter ˛ and t in (18) and (19) for
the expected posterior effectiveness renders the graphics shown
in Figure 1, referring to perinatal mortality data.

In practice, where unrealistically high correlations are obvi-
ously unattainable, the computational cost can be significantly
reduced. For example, for the case study in this example, we can
set an upper bound of tmax D 80, for the parameter t, which
represents an upper bound for the correlation of 80=81 � 0.99,
which we can obviously take as a case of maximum linear cor-
relation. At the same time, the classes �a and �b must contain
plausible distributions and/or those with which we want to make
comparisons. They should be neither too small, suggesting a false
degree of robustness, nor too large, in which case a high degree
of sensitivity would be immediately apparent because of the pres-
ence of an inappropriate distribution. For example, in the case
presented, with the aforementioned upper bound, it is not neces-
sary to consider the entire possible range of values for b because
with values b 6 4, we are guaranteed full coverage of all possible
values of t, because Pr .T 6 tmax/ � 1. Therefore, we study the
Bayesian robustness of the quantities of interest for this example,
for the classes of priors:

�a D fBeta.a, 1/j a > 1g and �b D fBeta.1, b/ j1 6 b 6 4 g .

Obviously other, higher values can be considered for the bounds
of t and b, but these would be much more costly in computation
times, while the results obtained would be virtually the same.

All computations were conducted using Mathematica
package (v.9). The code is available from the authors
upon request.

Observe that Figure 1 shows the quasi-flat behaviour of the
expected effectiveness for the ‘treated group’ and the control
group as a increases, given b, obtaining ranges of 1.4–4.4% and
1.7–4.5%, respectively.

In this particular case of data from [14], the ranges obtained in
each family of priors are shown in Table I. Table I also shows the
OR estimates under standard methods extracted from [15].2
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Figure 1. Left panel: Posterior expected effectiveness for treatment group (dashed line) and control (solid line) for values of the hyperparameter a > 1 and given discrete
values of b 2 f1, 2, 3, 4g (bottom to top). Right panel: Odds ratio for the case in the left panel (b D 1, 2, 3, 4).

Table I. OR point estimation (extracted from [15]) and ranges for
effectiveness, OR and index S in class �a,b in [14].

OR point estimation under common standard methods (95% CI)

DerSimonian–Laird 0.60 .0.40, 0.89/
Fixed effects 0.67 .0.56, 0, 80/

Hierarchical Bayesian random effects 0.60 .0.34, 1.08/
Robust Bayesian estimation

Group Effectiveness S
Treated 1.4–4.4% 34–106.1%
Control 1.7–4.5% 30.85–80.6%

OR .0.82, 0.92/ 8.3–9.9%

OR, odds ratio; CI, confidence interval.

Figure 2. Posterior density of the meta-effectiveness for the treatment group as a D 5 and b D 3 for treatment group (left panel) and control group (right panel).

In fact, the factor S is particularly high in all of the groups
considered here with respect to the rate of mortality data set.
However, as expected from Figure 1, the robustness is very high
when we analyse the usual OR quantity. The ranges obtained for
OR were .0.82, 0.92/ over class �a,b. The corresponding values
of the S index were roughly flat around 9%, indicating a robust
behaviour of the OR parameter. Observe that, in Figure 1, it seems
that only two values of b are depicted (corresponding to b D 1
and b D 4). The other values for b D 2, 3 are also plotted but,
the difference on the OR scale is so small that the graphics are
overlapped.

For the sake of illustration, let us examine a specific case. For
a D 5 and b D 3, the estimates of the meta-effectiveness param-
eter for the ‘treatment group’ and the control group are 3.85%
and 3.97%, respectively. Figure 2 shows the posterior density of
the meta-parameter � in both groups.

Observe that in contrast to the common meta-analysis proce-
dures based on normal approximations, this posterior distribution
is a skewed inverted-J distribution, such that one tail is longer

than the other. Then, the objective Bayesian highest posterior
density interval is also asymmetrical around the pooled estimate.
In particular, the 95% highest posterior density for each treatment
in this case is 0.003–18.85% and 0.002–19.4%, respectively. These
intervals show that the uncertainty of the posterior expected
effectiveness � is very large, both for the treatment group and
for the control one. For this case, the posterior distribution of the
OR have an estimated mean value of 0.985 and a very small esti-
mated standard variation of 0.0008, which indicates a very peaked
posterior distribution around their mean value.

Next, we test the null hypothesis that the meta-efficacy of the
treated group and the control group is equal (over the class of
priors �a,b). Using expression (17), we compute Bayes factors for
every density on �a,b. Then, a robust Bayesian analysis of the
probability of the null as .a, b/ varies can of course be carried out
by computing the interval

I.x1x1x1, n1n1n1, x2x2x2, n2n2n2/ D

 
inf

a,b>1
Pr.M0jdata/, sup

a,b>1
Pr.M0jdata/

!
,
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Table II. Ranges of expected (posterior) effectiveness and probabilities of
equality of treatment effects and S index for class of priors �a,b.

Stillbirths data
Group Exp. effects S factor (%) Post. prob. M0 S factor (%)

Treated .0.0116, 0.0481/ 37.92–156.98
.0.7971, 0.8876/ 5.1–5.7

Control .0.0142, 0.0488/ 35.43–121.54
OR .0.814, 0.984/ 8.64–10.44

Neonatal deaths data
Group Exp. effects S factor (%) Post. prob. M0 S factor (%)

Treated .0.0132, 0.0487/ 36.49–134.01
.0.7963, 0.8839/ 4.95–5.5

Control .0.0145, 0.0491/ 35.14–118.22
OR .0.906, 0.992/ 4.34–4.75

Exp., expected; Post. prob., posterior probabilities.

where data D fx1x1x1, n1n1n1, x2x2x2, n2n2n2g. Obviously, the smaller the length of
the interval, the greater the robustness of the posterior probabil-
ity of the equality being accepted.

The range for the posterior probabilities of the null model
M0 for the Sarmanov/Intrinsic–Jeffreys links obtained in �a,b is
.0.804, 0.874/. The robustness is high, with the sensitivity index S
ranging from 4.01% to 4.36%. Using the Jeffreys’ scale of evidence
for Bayes factors (really, we use a slight modification suggested by
Wasserman [24]), it follows from these ranges that there is moder-
ate empirical evidence for accepting the equality of effectiveness
for the treatment group and the control studies. This conclusion
contrasts with those obtained under the classical and hierarchical
Bayesian analyses shown in Figure 1 in [15], based on the ‘interval
criterion’ using a vague prior on precision.

An analogous data analysis was conducted for the data on ‘still-
births’ and ‘neonatal deaths’. Table II shows the posterior ranges
obtained for expected effects and probabilities of the null in
the equality test over the family of priors �a,b. Once again, the
ranges for posterior effects reflect a considerable lack of robust-
ness, with very high values for the S factor. In contrast, the case of
the posterior probabilities for testing equality of treatment effects
is markedly more robust, with a sensitivity index S of around
5%, indicating considerable robustness with respect to the asser-
tion that there is moderate empirical evidence for accepting the
equality of effects for both groups of treatments.

Ranges for OR are also very robust for both data sets. In the
stillbirths data set, the range obtained was .0.814, 0.984/. Simi-
larly, when the neonatal deaths data set was analysed, the range
obtained for OR was .0.906, 0.992/ with a quasi-flat S index of
around 4.5%.

6. CONCLUDING REMARKS

In this paper, we propose a Bayesian model for meta-analyses
with binomial sparse data. This model overcomes concerns pre-
sented by other methodologies where, among other ad hoc
techniques, correcting data by continuity is used. Taking into
account that link distribution cannot be arbitrarily chosen but
must be compatible with the Bayesian models for the exper-
iments and for the meta-model, we present a well-adapted
Sarmanov/Intrinsic–Jeffreys family, where, in some sense, the
higher the Pearson’s correlation coefficient, the smaller the
between-study heterogeneity. The particular dependence struc-
ture between �i and � induced by the Sarmanov/Intrinsic family
allows us to model a range of degrees of heterogeneity in a way

that is very simple and easy to apply in practice. For instance,
through the relationship obtained between linear correlation and
variance in the Sarmanov family, we see that the proposed robust
analysis is particularly appropriate in the commonly occurring sit-
uation in which heterogeneity variance is small. For example, it is
common to find case study where treatment effectiveness does
not differ appreciably between studies, and very similar clinical
trials designs are applied.

The Sarmanov/Intrinsic–Jeffreys family used presents three
significant advantages: (a) the problem can be approached
mathematically, and solutions are readily achieved by intensive
computation; (b) we can control the form or structure of the
dependence arising between the parameters within the class;
and (c) by introducing a prior density on the parameters ˛ and
t of the Sarmanov/Intrinsic family, we can analyse the sensitivity
of the measures of interest in the meta-analysis. The analysis of
other class of distributions and their properties can be an area for
future research [25].

Bayesian robustness methodology can be used to study how a
given model reacts to deviations of some inputs, usually related
to the prior distribution. In this way, we can measure the model’s
reaction to different situations of prior information. In fact, the
meta-analysis carried out of the real data shows a high degree of
robustness of the results with respect to the priors (equivalently,
hyperparameters a and b) when OR or the probability of equality
of treatments is measured.

As Sutton and Abrams [6] point out, it is of practical interest
to examine the sensitivity of the Bayesian meta-analysis models
to the prior distributions and to explore different ways of doing
so. The present paper may be considered a further step in this
direction. Although in the example presented, the heterogeneity
of treatments has been accepted, we observe that, when homo-
geneity is present, ignoring it can lead to misleading inferences
being drawn. This fact has important consequences for treat-
ment comparison, because the likelihoods of the meta-parameter
under homogeneity and heterogeneity are different. More gen-
eral scenarios need to be considered. This remains an open
question, to be examined in a future study. Another potential
extension of the methods presented here is in network
meta-analysis where the data structure is sparse because one is
interested in the comparison of several treatments, while only a
few of them are compared in each trial, which depicts a matrix
structure where most of the elements are zero.2
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