Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42117
Título: | Evaluation of local descriptors and CNNs for non-adult detection in visual content | Autores/as: | Castrillón-Santana, Modesto Lorenzo-Navarro, Javier Travieso-González, Carlos M. Freire-Obregón, David Alonso-Hernández, Jesús B. |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | MSC: 41A05 MSC: 41A10 MSC: 65D05 MSC: 65D17 Age estimation, et al. |
Fecha de publicación: | 2018 | Proyectos: | TIN2015-64395-R | Publicación seriada: | Pattern Recognition Letters | Resumen: | The recent evolution of storage devices, digital embedded cameras and the Internet have collaterally allowed sexual predators to take advantage of these technological breakthroughs to gather illegal media, which is exhibited uncensored through Peer-to-Peer file sharing networks. In this paper, we are particularly concerned about the increasing availability of Child Abuse Material. Therefore, we have explored alternatives to detect non-adults in visual content. Initially, different age estimations and underage detection techniques are reviewed by analyzing existing datasets. Finally, several local descriptors and Convolutional Neural Networks for underage detection are evaluated. The experimental results obtained for a large dataset that combines collections such as FG-Net, Adience, GenderChildren, The Image of Groups and Boys2Men evidence the complementary information contained in both local descriptors and neural networks, as their fusion boosts the accuracy of non-adult detection to over 93%. | URI: | http://hdl.handle.net/10553/42117 | ISSN: | 0167-8655 | DOI: | 10.1016/j.patrec.2017.03.016 | Fuente: | Pattern Recognition Letters [ISSN 0167-8655], v. 113, p. 10-18 |
Colección: | Artículos |
Citas SCOPUSTM
8
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 17-nov-2024
Visitas
221
actualizado el 09-nov-2024
Descargas
57
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.