Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42117
Título: Evaluation of local descriptors and CNNs for non-adult detection in visual content
Autores/as: Castrillón-Santana, Modesto 
Lorenzo-Navarro, Javier 
Travieso-González, Carlos M. 
Freire-Obregón, David 
Alonso-Hernández, Jesús B. 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: MSC: 41A05
MSC: 41A10
MSC: 65D05
MSC: 65D17
Age estimation, et al.
Fecha de publicación: 2018
Proyectos: TIN2015-64395-R
Publicación seriada: Pattern Recognition Letters 
Resumen: The recent evolution of storage devices, digital embedded cameras and the Internet have collaterally allowed sexual predators to take advantage of these technological breakthroughs to gather illegal media, which is exhibited uncensored through Peer-to-Peer file sharing networks. In this paper, we are particularly concerned about the increasing availability of Child Abuse Material. Therefore, we have explored alternatives to detect non-adults in visual content. Initially, different age estimations and underage detection techniques are reviewed by analyzing existing datasets. Finally, several local descriptors and Convolutional Neural Networks for underage detection are evaluated. The experimental results obtained for a large dataset that combines collections such as FG-Net, Adience, GenderChildren, The Image of Groups and Boys2Men evidence the complementary information contained in both local descriptors and neural networks, as their fusion boosts the accuracy of non-adult detection to over 93%.
URI: http://hdl.handle.net/10553/42117
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2017.03.016
Fuente: Pattern Recognition Letters [ISSN 0167-8655], v. 113, p. 10-18
Colección:Artículos
Preprint
Unknown (613,97 kB)
Vista completa

Citas SCOPUSTM   

8
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 17-nov-2024

Visitas

221
actualizado el 09-nov-2024

Descargas

57
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.